Need Help - 1st time on forum

Advanced methods and approaches for solving Sudoku puzzles

Postby Jeff » Wed Dec 07, 2005 11:11 am

My friend rmadhusudanan,
Sorry that I have confused you. This was Mac's grid and I have just copied it to show him the format. Your logic is excellent anyway.:D
Jeff
 
Posts: 708
Joined: 01 August 2005

Postby rmadhusudanan » Wed Dec 07, 2005 7:35 pm

My New friend Jeff,

Thanks. I am new to this forum and I hope I have not given any offence.

Do pass on any brain teasers for me to enjoy solving them as you all must be doing for all these years.

R Madhusudanan
India
rmadhusudanan
 
Posts: 5
Joined: 28 November 2005

Re: djwillard's problem

Postby QBasicMac » Thu Dec 08, 2005 1:46 am

rmadhusudanan wrote:When you eliminate this candidate you will easily see that R7C6 CAN BE ONLY 6.


Here is the original puzzle and the solution (In strange format to make comparisons easy)

1 - Row Numbers
2 - Original Puzzle
3 - Solution
4 - What I posted with my question
Code: Select all
111111111 222222222 333333333 444444444 555555555 666666666 777777777 888888888 999999999
-3-5-487- -----7--9 4-----5-6 -1-8--26- ----6---- -63--9-8- 8-1-----5 3--9----- -964-8-3-
639524871 152687349 487391526 915843267 748162953 263759184 871236495 324975618 596418732
63-5-487- 1--6-7349 4-----5-6 91-8--26- ----6-95- -63--9-8- 8-1----95 3--9----8 -964-8-3-


I made some simple pencilmark eliminations and then posted my pencilmarks, here reformatted for Jeff.:)
Code: Select all
+----------------+----------------+----------------+
| 6    3    29   | 5    129  4    | 8    7    12   |
| 1    258  258  | 6    28   7    | 3    4    9    |
| 4    278  2789 | 123  12389123  | 5    12   6    |
+----------------+----------------+----------------+
| 9    1    45   | 8    3457 35   | 2    6    347  |
| 27   248  248  | 1237 6    123  | 9    5    1347 |
| 257  6    3    | 127  124579    | 17   8    147  |
+----------------+----------------+----------------+
| 8    247  1    | 237  237  236  | 46   9    5    |
| 3    2457 2457 | 9    1257 1256 | 46   12   8    |
| 25   9    6    | 4    125  8    | 17   3    127  |
+----------------+----------------+----------------+


In response, em said "There are 2 simple moves to get beyond your posted candidates. A naked triple in row three and an Xwing in r69c15. After that it’s colouring or chains I’m afraid."

So in honor of the X-Wing, I eliminated 5 from r8c5 and r4c5 and in honor of the naked triple, I eliminated 123 from r3c5 and 2 from r3c2 and r3c3.

Now I was prepared for colouring or chains, I'm afraid.

Your observation that r8c5=1 > r3c8=1 > r1c5=1 (impossible) was kind of appealing although I normally avoid chains. So, I removed the pencilmakr 1 from r8c5. This left me with the following pencilmarks.

Code: Select all
+----------------+----------------+----------------+
| 6    3    29   | 5    129  4    | 8    7    12   |
| 1    258  258  | 6    28   7    | 3    4    9    |
| 4    278  2789 | 123  12389123  | 5    12   6    |
+----------------+----------------+----------------+
| 9    1    45   | 8    3457 35   | 2    6    347  |
| 27   248  248  | 1237 6    123  | 9    5    1347 |
| 257  6    3    | 127  124579    | 17   8    147  |
+----------------+----------------+----------------+
| 8    247  1    | 237  237  236  | 46   9    5    |
| 3    2457 2457 | 9    257  1256 | 46   12   8    |
| 25   9    6    | 4    125  8    | 17   3    127  |
+----------------+----------------+----------------+


Here is where you say that if I eliminate the 1 (which I did) that I will easily see that R7C6 CAN BE ONLY 6.

The pencilmarks I show lead to the solution easily by T&E. If you have different ones, is there some more simple chains or something that will lead to the place where I "easily see" that r7c6=6?

Thanks for your patience.

Mac
QBasicMac
 
Posts: 441
Joined: 13 July 2005

Postby Jeff » Thu Dec 08, 2005 2:31 am

rmadhusudanan wrote:I am new to this forum and I hope I have not given any offence.

No offence whatsoever.

rmadhusudanan wrote:Do pass on any brain teasers for me to enjoy solving them as you all must be doing for all these years.

Tso, could you help this gentleman out as I know you have plenty of good ones in your library.
Jeff
 
Posts: 708
Joined: 01 August 2005

Re: djwillard's problem

Postby Jeff » Thu Dec 08, 2005 2:35 am

QBasicMac wrote:[I made some simple pencilmark eliminations and then posted my pencilmarks, here reformatted for Jeff.:)

Nicely done, thank you.
Jeff
 
Posts: 708
Joined: 01 August 2005

Postby rmadhusudanan » Thu Dec 08, 2005 5:43 am

Dear Mac

I have to learn much of the language used.

What is T&E. Is is trial and error?

Please direct me to where i can learn what is coloring as i am not familiar with this.

Thanks in advance

Madhusudanan
rmadhusudanan
 
Posts: 5
Joined: 28 November 2005

Postby Ruud » Thu Dec 08, 2005 8:53 pm

T&E is indeed Trial & Error. A very ugly term to some people.

Colouring is best described here: http://www.simes.clara.co.uk/programs/sudokutechnique12.htm

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Previous

Return to Advanced solving techniques