- Code: Select all
Abbreviation keys:
(V)alue
(L)ocation
(C)ell
(S)ector
my code takes the nodes of each strong link by type: Cell, or Sector and sorts the string into smallest order first which isolates duplicates and minimizes the classification for equal chains that are in reverse order.
for example there is No "S - Ring " as a theorized ring version is a M(2)- Ring written backwards by link types.
CSSCSS = SSCSSC
- Code: Select all
Size 3 : three strong links 2 weak-inference
VVV (3 digits) XY-Wing: (a=b) - (b=c) - (c=a) => -a (common peers)
c s c s c
----------------------------------------------------------------------------------------
VLV (2 digits) W-Wing: (a=b) - b = b - (b=a) => -a (common peers)
C S S S C
----------------------------------------------------------------------------------------
LVL (2 digits) S-Wing: a = a - (a=b) - b = b => -a (last), -b (first)
S S C S S
----------------------------------------------------------------------------------------
VLL (2 digits) M2-Wing: (a=b) - b = (b-a) = a => -a (common peers)
C S S C S
VLL (3 digits) M3-Wing: (a=b) - b = (b-c) = c => -a (last cell)
C S S C S
----------------------------------------------------------------------------------------
LLL (1 digit) L(1)-Wing: a = a - a = a - a = a => -a (common peers)
s s s s s
LLL (2 digits) L(2)-Wing: a = (a-b) = b - b = b => -a (last), -b (first)
s c s s s
LLL (2 digits) L(2)- wing: a = (a-b) = (b-a) = a => -a (common peers)
S C S C S
LLL (3 digits) L(3)-Wing: a = (a-b) = (b-c) = c => -a (last), -c (first)
s C S C S
----------------------------------------------------------------------------------------
VLL(2 digits) H(1)- Wing: (a=b) - b = b - b = b => -a (last), -b (first)
C S S S S
VVL (2 digits) H(2) Wing: (a=b)-(b=a) - a = a => -a (common peers)
c s c s s
VVL (3 digits) : H(3)-Wing: (a=b) - (b=c) - c = c => -a (last cell)
C S C S S
----------------------------------------------------------------------------------------
Size 4 : 4 strong links 3 weak-inference
LLLL Strong - Wing: a=a - b=b - C=C - d=d {first and last cells = first and last digits)
S C S C S C S
LLLL i(verted) W-wing: a=a - b=b - b=b - a=a => -a (common peers)
s c s s s c s
VLLVL (Dual W Wing): a=b - b = b - b=a - a=a => -a (common peers)
c s s s c s s
----------------------------------------------------------------------------------------
added these to complete the Inversion we started years ago after stopping at the iW wing.
{ the concept is to take all the links in the descriptions above and exchange = for -, then add the missing strong links found at the start and end of the chain}
LLLL (3 digits) (i)XY-Wing: (a=a)-(b = b)-(c = c)-(a=a) => -a (common peers)
s c s c s c s
----------------------------------------------------------------------------------------
LLLL (i)S-wing:(A=A) -(A = A)-(B = b) - (b=B)
s s s c s s s
----------------------------------------------------------------------------------------
LLVL (i)M(2) wing(a=a)-(b=b) - (b=a) -(a=a) => -a (common peers)
s c s s c s s
LLVL (i)M(3)-Wing: (a=a)-(b = b) - (b=c) - (c=c) => -a (last), -b (first)
S C S S C S S
-------------------------------------------------------------------------------------------
LLLL (1 digit) (i)L(1)-Wing: a = a - a = a - a = a - a=a => -a (common peers)
s s s s s s s
LVLLL (2 digits) (i)L(2)-Wing: (a=a) -(a=b) - (b = b) - (b=b) => -a (last), -b (first)
s s c s s s s
LVVL (2 digits) (i)L(2)- wing: (a=a) - (a=b) - (b=a) - (a=a) => -a (common peers)
s s c s c s s
LVVL (3 digits) (i)L(3)-Wing: a=a - (a=b) - (b=c) - c=C => -a (last), -c (first)
s S C S C S S
----------------------------------------------------------------------------------------
LLLL(2 digits) (i)H(1)- Wing: (a=a)-(b = b) - (b = b) - (b=b) => -a (last), -b (first)
s c s s s s s
LLLL (2 digits) (i)H(2) Wing: (a=a)-(b=b)-(a = a) - (a=a) => -a (common peers)
s c s c s s s
LLLL (3 digits) : (i)H(3)-Wing: (a=a)-(b=b)-(c=c)-(c=c) => -a (last), -b (first)
s c s c s s s
----------------------------------------------------------------------------------------
note: my code for Aic "rings" cannot swap the order due to the "weak link" added at the end case counts must include variations.
LLLL (1 digit) L1-Ring: a = a - a = a - a = a - a => (ring elims)
s s s s s S
LVVL (2 digits) H(2) Ring: a = a -(a=b)-(b=A) - a => (ring elims)
s s c s c s
VLLV(2 digits) H(2)-Ring: (a=b)-(b)=(b)-(b=a)-(a)r7c4 => (ring elims)
c S S S C S
VVLL(2digit H(2)-wing: (A=b)-(a=b)-(b)=(b)-(a)r1c1 => r12c2 <> 2, 6; b3p24 <> 2
C S C S S S
LLLL (2 digits): L2- Ring: a = (a-b) = (b-a) = a - A {RING ELIMS}
S C S C S S
LLLL(2 digit) L(2)Ring: (a)=(a-b)=(b)-(b)r12c4=(b-a) => (ring elims)
S C S S S C
VLLL (2 digits) M2-Ring: (a=b) - b = (b-a) = a - a=> (ring elims)
C S S C S S
LLLV (2 digit) M2 -Ring: A=(a-B)=(B)-(B=A)-(A) => {RING eLIMS}
S C S S C S
LVLL(2 digit)M(2) Ring: (a)=(a)-(a=b)-(b)=(b-a) => r6c8 <> 2, 6; r6c4 <> 6
s s c s s c
LLLLV Strong - Ring: (a=a) - (b=b) - (C=C) -(d=d) - a { Ring elims)
S C S C S C S C
VVVVL (4 digits) xY-Ring: (a=b) - (c=d) - (d=e) -(e=a) - a => {ring elims}
c s c s c s c s
VLVLL (3 digits) W-Ring: (a=b) - b = b - (b=a) - a = a - a= => (ring elims)
C S S S C s s s
LVLVL (3 digits) W -Ring:A=A - (a=b) - b = b - (b=a) - a= => (ring elims)
S S C S S S C S
LLLLL (3 digits) (i)XY-Ring: (a=a)-(b = b)-(c = c)-(a=a) -a =>
s c s c s c s a
LLLLL (i)W- ring (A=A)-(B=B)-(B=B)-(A=A)-a =>
s c s s s c s s
LLLLV (i)S-Ring:(A=A) -(A = A)-(B = b) - (b=B) -a
s s s c s s s c
LLVLL (i)M(2)ring(a=a)-(b=b) - (b=a) -(a=a) - a =>
s c s s c s s s
LLVLL (i)M(3)-Ring: (a=a) -(b=b) - (b=c) - c = c - a =>
s c s s c s s c
LLLLL (1 digit) (i)L(1)-Ring: a = a - a = a - a = a - a=a -a
s s s s s s s s
LVLL (2 digits) (i)L(2)-Ring: (a=a) -(a=b) - (b = b) - (b=b)-A =>
s s c s s s s C
LVVL (2 digits) (i)L(2)- Ring: (a=a) - (a=b) - (b=a) - (a=a) -a =>
s s c s c s s s
LVVL (3 digits) (i)L(3)-Ring: a=a - (a=b) - (b=c) - c=C - A
s S C S C S S C
LLLL(2 digits) (i)H(1)- Ring: (a=a)-(b = b) - (b = b) - (b=b)-a => -a (last), -b (first)
s c s s s s s C
LLLLL (2 digits) (i)H(2) Ring: (a=a)-(b=b)-(a = a) - (a=a) -a =>
s c s c s s s S
LLLLV (3 digits) : (i)H(3)-Ring: (a=a)-(b=b)-(c=c)-(c=c)-a =>
s c s c s s s C
------------------------------------------------------------------------
notes: X - chain
LL: a = a - a = a
has sub classed based on combinations of Row/col/ box
link type 2(bi local}, type 3 {single to grouped},type 4(grouped to single),(5 all eri)
(row + row) or (col + col) links are type 2 only: x- wing
row + col - links are type 2: 2- String kite
row + col - links are type 3 to type 4: grouped 2-string kite { one of the type 3 or type 4 may be replaced with type 2}
(row or col) + box => type 2 to type 5 : Empty rectangle
note : if the start and end cells are not have direct peers { the finned is changed to Sashimi}
(Row + row) or (col + col) links are type 4 to type 2 : Finned X - wing
(Row + row) or (col + col) links are type 2 to type 3 : Finned X - wing
note : if the start and end cells are not have direct peers
(row + row) or (col + col) links are type 2 only: Skyscraper { is a combination of 2 Sashimi x-wings}
------------------------------------------------------------------------
notes: X - chain
LLLL: a = a - a = a -a
this is the X-wing by name technically its a "ring"
------------------------------------------------------------------------
notes: X-chain subclass L1 wing
LLL: a=a - a = a - a= a
has further sub-classifications if you wish:
box - box - box : all type 5 links => 3x ERI
Row - box - col: type 2 to type 5 to type 2: => Dual empty rectangle {Mr.Crabs}
Row - box - col: type 4 to type 5 to type 3: => Rec't kite { one of the type 3 or type 4 may be replaced with type 2}
box - (row or col) - box : tpe 5 to type 2 to type 5 : linked Dual ERI
------------------------------------------------------------------------
notes: X-chain subclass L1 Ring
LLLL: a=a - a = a - a= a - a
has further sub-classifications if you wish:
Row - box - col - back to start: type 2 to type 5 to type 2: => Dual empty rectangle: ring {Mr.crab pinched him self}
Row - box - col - back to start: type 4 to type 5 to type 3: => Rec't kite: ring { one of the type 3 or type 4 may be replaced with type 2}
box - (row or col) - box - back to start: tpe 5 to type 2 to type 5 : Linked Dual ERI: ring
------------------------------------------------------------------------
xy - chains {all bivalves}
2 digit xy chains {remote pairs}
hidden xy - chains { all bi local}
hidden remote pair { all bi local 2 digits exclusively}
------------------------------------------------------------------------
als to be added later : {if requested} example names
als - xz {1-2 rcc}
ahs -xz
als - xy { 2-3 RCC}
ahs - xy
als - chain {n RCC , n+1RCC}
aals - 2rcc
DDS {sue de coq, death blossom }
ALS - w wing/rings
als - S wing
als - M wing /rings
AHS - w wing/rings
aHs - S wing
aHs - M wing /rings
note: link types with drawings
if anyone has some continuity suggestions I'm open to ideas for streamlining this.
EDIT: added notes for Ring class my code doesn't have a flip option for rings: as the last node is a "Weak link" to finish the ring, so i have to include cases for RING types.
Edit: added missing W-ring trigger, added missing w-dual wing class { break down of the w-rings, half eliminations}
edit: rebuilt inversion named Wings found some errors with in the building of the chains that didnt match others, ground up rebuild 8/10/24