Name in Puzzle

For fans of Killer Sudoku, Samurai Sudoku and other variants

Name in Puzzle

Postby Hajime » Mon Jun 25, 2018 12:19 pm

My own name in a Sudoku puzzle.
5 heavily overlapping normal Sudoku's, overlapping area's are light blue and some cells are part of 3 grids.
The givens are colored light red and green and form my username.

I will ask my mother for an embroidery on my pillow, so I can sleep on it.
Or maybe even print it on my coffee-cup or the back of my T-shirt.

The puzzle itself is (very) easy. It was more difficult to make :)

An image
name_calling.PNG
name_calling.PNG (17.59 KiB) Viewed 794 times


In code:
Hidden Text: Show
Code: Select all
605000700204000100709006230103005090456007010807012465302040508501070003908020001
005090023007010006012465009040508002070003004020001007000000908000000601000000040
508002040003004080001007030000908010000601090000040070000000060000000020000000050
908010000601090000040070000000060000000020000000050000000700080000180720000205040
060000459020000300050000100700080213180720564205040800302070900500030600600050731
User avatar
Hajime
 
Posts: 1011
Joined: 20 April 2018
Location: Netherlands

Re: Name in Puzzle

Postby m_b_metcalf » Sat Dec 18, 2021 9:17 am

Thanks for drawing attention to this. Here's a much harder puzzle based on your grid.

Regards,

Mike

Code: Select all
 . . . . 3 4 . . 9 . . . . . . . . . . . .
 . 3 4 . 8 . . . . . . . . . . . . . . . .
 7 . . . . . 2 . . . . . . . . . . . . . .
 . 2 . . . . 8 . . . . 3 . . . . . . . . .
 . . . . 9 7 . 1 . . . . . . . . . . . . .
 . 9 . . . . . . . . . 9 . . . . . . . . .
 . . . . 4 . . 7 8 . . . . . 9 . . . . . .
 . 4 1 . 7 8 . . . . . . 7 . . . . . . . .
 . . . . . . 6 . . . . 7 . . . . . . . . .
 . . . . . . . . . . . . . . 4 . . . . . .
 . . . . . . . . . . . . . . . . . . . . .
 . . . . . . 1 . . . . . . . . . . . . . .
 . . . . . . . . . 4 . . . . 7 . . . . . .
 . . . . . . . . 5 . . . . . . 5 6 . 3 7 .
 . . . . . . 8 . . . . . 4 5 . . 9 . . . .
 . . . . . . . . . 3 . . . . . . . . . 1 .
 . . . . . . . . . . . . . 8 . 7 2 . . . .
 . . . . . . . . . 8 . . . . 5 . . . . 9 .
 . . . . . . . . . . . . . . 2 . . . . . 5
 . . . . . . . . . . . . . . . . 3 . 6 4 .
 . . . . . . . . . . . . 6 . . 2 5 . . . .

 Number of clues  56, rotationally symmetric.


Code: Select all
000034009034080000700000200020000800000097010090000000000040078041078000000000600
000800003097010000000000009040078000078000000000600007000000000000000000000100000
078000009000000700600007000000000004000000000100000000000400007005000000800000450
000004000000000000000000000400007000000000560000450090300000000000080720800005000
007000000000560370450090000000000010080720000005000090002000005000030640600250000
Last edited by m_b_metcalf on Sat Dec 18, 2021 9:56 am, edited 1 time in total.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13127
Joined: 15 May 2006
Location: Berlin

Re: Name in Puzzle

Postby Hajime » Sat Dec 18, 2021 9:48 am

I cannot paste the above picture. Can you supply the 5 grids in 81-strings?
Ans I cannot recognize your name in the puzzle :lol:
User avatar
Hajime
 
Posts: 1011
Joined: 20 April 2018
Location: Netherlands

Re: Name in Puzzle

Postby m_b_metcalf » Sat Dec 18, 2021 9:56 am

Hajime wrote:I cannot paste the above picture. Can you supply the 5 grids in 81-strings?

See above. M
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13127
Joined: 15 May 2006
Location: Berlin

Re: Name in Puzzle

Postby Hajime » Sat Dec 18, 2021 10:29 am

m_b_metcalf wrote:Here's a much harder puzzle based on your grid.

Only Naked/Hidden Subsets and Pointing/Claiming needed ?
Possible Solution Path:
Hidden Text: Show
Code: Select all
[1,1] g1r4c8=9 Hidden Single in row 8
[1,2] g1r9c2=7 Hidden Single in col 9
[1,3] g1r8c7=9 Hidden Single in col 8
[1,4] g1r9c9=1 Hidden Single in box 9
[1,5] g1r9c8=4 Hidden Single in box 8
[1,6] g3r1c8=4 Hidden Single in row 8
[1,7] g3r8c1=4 Hidden Single in row 1
[1,8] g3r8c2=6 Hidden Single in row 2
[1,9] g3r3c4=8 Hidden Single in col 3
[1,10] g3r2c8=8 Hidden Single in col 2
[1,11] g3r3c5=9 Hidden Single in box 8
[1,12] g3r9c3=7 Hidden Single in box 9
[1,13] g4r5c9=4 Hidden Single in row 9
[1,14] g4r6c9=7 Hidden Single in row 9
[1,15] g4r6c7=8 Hidden Single in row 7
[1,16] g4r4c9=2 Hidden Single in box 3
[1,17] g4r4c7=3 Hidden Single in box 1
[1,18] g5r1c5=1 Naked Single
[1,19] g5r6c5=4 Naked Single
[2,20] g1r3c9=4 Hidden Single in row 9
[2,21] g1r3c8=3 Hidden Single in box 8
[2,22] g1r1c8=8 Hidden Single in box 2
[2,23] g2r3c5=6 Hidden Single in col 3
[2,24] g3r7c2=1 Hidden Single in row 2
[2,25] g3r9c2=9 Hidden Single in row 2
[2,26] g3r9c9=3 Hidden Single in box 9
[2,27] g3r7c8=6 Hidden Single in box 2
[2,28] g4r7c8=8 Naked Single
[2,29] g5r7c5=7 Naked Single
[3,30] g1r2c8=5 Naked Single
[3,31] g1r8c8=2 Naked Single
[3,32] g1r8c9=3 Naked Single
[3,33] g2r4c4=5 Naked Single
[3,34] g3r7c3=2 Naked Single
[3,35] g4r5c3=3 Hidden Single in col 5
[3,36] g4r7c5=4 Hidden Single in col 7
[3,37] g5r4c9=3 Hidden Single in row 9
[3,38] g5r7c4=4 Hidden Single in row 4
[3,39] g5r7c6=6 Hidden Single in row 6
[3,40] g5r8c9=2 Hidden Single in row 9
[3,41] g5r8c1=5 Hidden Single in row 1
[3,42] g5r8c2=7 Hidden Single in row 2
[3,43] g5r9c3=4 Hidden Single in row 3
[3,44] g5r3c8=2 Hidden Single in col 3
[3,45] g5r5c8=6 Hidden Single in col 5
[3,46] g5r3c9=6 Hidden Single in col 3
[3,47] g5r4c3=6 Hidden Single in box 3
[3,48] g5r6c4=6 Hidden Single in box 7
[4,49] g1r7c2=6 Naked Single
[4,50] g1r8c1=5 Naked Single
[4,51] g1r8c4=6 Naked Single
[4,52] g2r4c7=3 Hidden Single in col 4
[4,53] g3r7c1=3 Naked Single
[4,54] g4r7c7=9 Naked Single
[4,55] g4r7c9=5 Naked Single
[4,56] g5r3c7=1 Naked Single
[4,57] g5r5c9=4 Naked Single
[4,58] g5r8c4=1 Naked Single
[5,59] g1r2c9=6 Hidden Single in col 2
[5,60] g3r2c9=6 Hidden Single in row 9
[5,61] g3r7c6=9 Hidden Single in col 7
[5,62] g3r3c9=5 Hidden Single in col 3
[5,63] g3r1c7=1 Hidden Single in box 1
[5,64] g3r7c5=5 Hidden Single in box 2
[5,65] g3r8c5=8 Hidden Single in box 5
[5,66] g3r7c7=8 Hidden Single in box 1
[5,67] g4r5c6=1 Naked Single
[5,68] g4r8c6=9 Naked Single
[5,69] g5r1c8=5 Naked Single
[5,70] g5r1c9=9 Naked Single
[5,71] g5r2c9=8 Naked Single
[5,72] g5r5c7=5 Naked Single
[5,73] g5r6c9=7 Naked Single
[5,74] g5r8c3=8 Naked Single
[5,75] g5r8c6=9 Naked Single
[5,76] g5r9c6=8 Naked Single
[5,77] g5r9c8=3 Naked Single
[5,78] g5r9c9=1 Naked Single
[6,79] g3r8c4=7 Hidden Single in row 4
[6,80] g4r9c2=9 Hidden Single in row 2
[6,81] g4r7c4=7 Hidden Single in col 7
[6,82] g4r9c3=7 Hidden Single in box 9
[6,83] g5r1c7=4 Naked Single
[6,84] g5r4c7=2 Naked Single
[6,85] g5r6c7=8 Naked Single
[6,86] g5r7c7=9 Naked Single
[6,87] g5r7c8=8 Naked Single
[6,88] g5r9c2=9 Naked Single
[6,89] g5r9c7=7 Naked Single
[7,90] g3r8c8=2 Naked Single
[7,91] g4r5c4=9 Naked Single
[7,92] g5r6c1=2 Hidden Single in row 1
[8,93] g3r3c8=3 Naked Single
[8,94] g4r8c4=1 Hidden Single in col 8
[8,95] g4r9c5=3 Hidden Single in col 9
[8,96] g4r9c9=1 Hidden Single in box 9
[8,97] g4r8c9=3 Hidden Single in box 6
[8,98] g5r7c1=3 Naked Single
[8,99] g5r7c2=1 Naked Single
[9,100] g3r3c7=2 Naked Single
[9,101] g4r3c7=1 Hidden Single in row 7
[9,102] g4r2c7=4 Hidden Single in col 2
[9,103] g4r1c7=2 Hidden Single in box 1
[10,104] g3r4c1=2 Hidden Single in row 1
[10,105] g3r5c3=4 Hidden Single in row 3
[10,106] g3r5c1=7 Hidden Single in col 5
[10,107] g4r2c8=7 Hidden Single in row 8
[11,107] Naked/Hidden Pairs,Triplets,Quads  | NTriple (235)g1b8e789 => (-2)g1r7c4 (-2)g1r7c6 | NTriple (235)g1r9c456 => (-23)g1r9c1 (-23)g1r9c3
[12,107] Naked/Hidden Pairs,Triplets,Quads  | NPair (19)g1r7c46 => (-9)g1r7c1 (-9)g1r7c3
[13,107] Pointing, Claiming  | (6)g1r1b1 => (-6)g1r3c3 | (3)g1r4b4 => (-3)g1r5c1 (-3)g1r5c3 (-3)g1r6c1 (-3)g1r6c3 | (6)g1b5r4 => (-6)g1r4c1 (-6)g1r4c3 | (1)g1b4c1 => (-1)g1r1c1 (-1)g1r2c1 | (6)g2b1r1 => (-6)g2r1c7 (-6)g2r1c8 | (2)g2r1b3 => (-2)g2r2c7 (-2)g2r2c8 (-2)g2r2c9 (-2)g2r3c7 (-2)g2r3c8 | (4)g2r7b7 => (-4)g2r9c1 (-4)g2r9c3 | (4)g2b1c1 => (-4)g2r7c1 | (8)g2b1c1 => (-8)g2r7c1 (-8)g2r8c1 (-8)g2r9c1 | (3)g2c2b7 => (-3)g2r7c1 (-3)g2r7c3 (-3)g2r8c1 (-3)g2r8c3 (-3)g2r9c1 (-3)g2r9c3 | (4)g2c7b3 => (-4)g2r1c8 (-4)g2r2c8 (-4)g2r2c9 (-4)g2r3c8 | (7)g2c7b3 => (-7)g2r1c8 (-7)g2r3c8 | (5)g2c8b3 => (-5)g2r1c7 (-5)g2r2c7 (-5)g2r2c9 (-5)g2r3c7 | (8)g2c8b3 => (-8)g2r2c9
[14,108] g2r2c9=6 Naked Single
[14,109] g2r4c9=2 Naked Single
[14,110] g3r1c5=6 Naked Single
[14,111] g4r8c2=6 Hidden Single in col 8
[14,112] g4r7c3=2 Hidden Single in col 7
[14,113] g4r6c3=6 Hidden Single in col 6
[14,114] g4r7c2=1 Hidden Single in box 2
[14,115] g4r8c3=4 Hidden Single in box 6
[14,116] g4r8c1=5 Hidden Single in box 4
[15,117] g2r2c7=4 Naked Single
[15,118] g3r9c5=2 Naked Single
[15,119] g4r2c2=3 Naked Single
[15,120] g4r6c1=1 Naked Single
[16,121] g1r5c7=3 Naked Single
[16,122] g1r6c7=4 Naked Single
[16,123] g2r5c7=5 Naked Single
[16,124] g2r7c8=7 Naked Single
[16,125] g2r9c8=4 Naked Single
[16,126] g3r2c5=1 Naked Single
[16,127] g3r2c6=4 Naked Single
[16,128] g4r3c5=7 Hidden Single in row 5
[17,129] g1r5c1=4 Hidden Single in row 1
[17,130] g1r5c3=6 Hidden Single in row 3
[17,131] g1r1c1=6 Hidden Single in col 1
[17,132] g1r4c4=4 Hidden Single in col 4
[17,133] g2r7c3=4 Hidden Single in row 3
[17,134] g2r9c1=7 Hidden Single in row 1
[17,135] g2r1c8=2 Hidden Single in col 1
[18,135] Naked/Hidden Pairs,Triplets,Quads  | NPair (69)g2r7c67 => (-9)g2r7c1 (-6)g2r7c2 | NPair (69)g3r4c34 => (-6)g3r4c7 (-9)g3r4c8 | NTriple (169)g3r4c348 => (-1)g3r4c6 | NPair (58)g3b5e39 => (-58)g3r5c6 | NSext (123568)g3b6e124679 => (-1)g3r5c8 | NTriple (358)g4r1c348 => (-8)g4r1c9 | NTriple (135)g4r1c458 => (-5)g4r1c3 | 1 (8)g4b1e3 => (-8)g4r3c3 | NPair (19)g4r2c35 => (-9)g4r2c1 (-9)g4r2c9 | 1 (5)g4r3c3 => (-5)g4r3c4 (-5)g4r3c8 | NTriple (356)g4r3c348 => (-6)g4r3c1 (-6)g4r3c9 | NPair (35)g4r3c38 => (-3)g4r3c4 | 1 (3)g4b3e8 => (-3)g4r1c8 | NPair (56)g4c4r23 => (-5)g4r1c4 | 1 (6)g4c4r3 => (-6)g4r2c4
[19,136] g2r7c9=8 Naked Single
[19,137] g2r8c9=1 Naked Single
[19,138] g2r9c9=5 Naked Single
[19,139] g3r4c7=3 Naked Single
[19,140] g3r4c8=1 Naked Single
[19,141] g3r5c7=5 Naked Single
[19,142] g3r5c8=9 Naked Single
[19,143] g3r6c7=6 Naked Single
[19,144] g4r1c8=5 Naked Single
[19,145] g4r3c8=3 Naked Single
[20,146] g2r7c5=5 Naked Single
[20,147] g2r8c5=8 Naked Single
[20,148] g2r9c5=3 Naked Single
[20,149] g2r9c6=9 Naked Single
[20,150] g2r9c7=2 Naked Single
[20,151] g3r4c3=6 Naked Single
[20,152] g3r4c4=9 Naked Single
[20,153] g3r5c4=6 Naked Single
[20,154] g3r5c9=2 Naked Single
[20,155] g3r6c9=8 Naked Single
[20,156] g4r1c9=6 Naked Single
[20,157] g4r2c9=8 Naked Single
[20,158] g4r3c9=9 Naked Single
[21,159] g2r7c1=1 Naked Single
[21,160] g2r7c2=3 Naked Single
[21,161] g2r9c3=6 Naked Single
[22,162] g1r7c4=9 Naked Single
[22,163] g1r7c6=1 Naked Single
[22,164] g2r1c3=5 Naked Single
[22,165] g2r1c6=7 Naked Single
[22,166] g2r1c7=1 Naked Single
[22,167] g2r3c7=7 Naked Single
[22,168] g2r9c2=8 Naked Single
[23,169] g1r4c3=3 Naked Single
[23,170] g1r4c5=6 Naked Single
[23,171] g1r7c3=2 Naked Single
[23,172] g2r3c2=1 Hidden Single in row 2
[23,173] g2r8c3=9 Hidden Single in row 3
[24,174] g1r1c3=5 Naked Single
[24,175] g1r3c5=5 Naked Single
[24,176] g1r4c1=1 Naked Single
[24,177] g1r6c1=8 Naked Single
[24,178] g1r6c3=7 Naked Single
[24,179] g1r7c1=3 Naked Single
[24,180] g1r9c1=9 Naked Single
[24,181] g1r9c3=8 Naked Single
[24,182] g1r9c5=2 Naked Single
[24,183] g1r9c6=3 Naked Single
[24,184] g2r3c3=2 Naked Single
[24,185] g2r3c6=5 Naked Single
[24,186] g2r3c8=8 Naked Single
[24,187] g2r6c1=5 Naked Single
[24,188] g2r8c1=2 Naked Single
[24,189] g2r8c2=5 Naked Single
[25,190] g1r1c2=1 Naked Single
[25,191] g1r1c7=7 Naked Single
[25,192] g1r2c1=2 Naked Single
[25,193] g1r2c6=9 Naked Single
[25,194] g1r2c7=1 Naked Single
[25,195] g1r3c2=8 Naked Single
[25,196] g1r3c3=9 Naked Single
[25,197] g1r3c4=1 Naked Single
[25,198] g1r3c6=6 Naked Single
[25,199] g1r5c2=5 Naked Single
[25,200] g1r5c4=8 Naked Single
[25,201] g1r5c9=2 Naked Single
[25,202] g1r6c4=3 Naked Single
[25,203] g2r2c8=5 Naked Single
[26,204] g1r1c4=2 Naked Single
[26,205] g1r2c4=7 Naked Single

This one also needs X-chains and XY-chains:
Code: Select all
#5//B4/E10/H16/K22/N28
8..34...263..2..1........961.........7......5..8......26.4.....7...........7.....
........5.....5.........83.4.................7........1..............2.75........
........................6..............2.7..............8........................
........42.7..............7........3.................1.56.........4.....7........
.....3...........1.....1.87......3..4......1.........884........7..3..293...94..5
But my name is gone :D
User avatar
Hajime
 
Posts: 1011
Joined: 20 April 2018
Location: Netherlands

Re: Name in Puzzle

Postby m_b_metcalf » Sat Dec 18, 2021 11:14 am

With 5 clues removed to make it minimal, maybe it's a tad harder?
Code: Select all
800340002630020010000000090100000000070000005008000000260400000000000000000700000
000000005000005000000000030400000000000000000700000000100000000000000207500000000
000000000000000000000000600000000000000207000000000000008000000000000000000000000
000000004207000000000000007000000003000000000000000001056000000000400000700000000
000003000000000001000001007000000300400000010000000008840000000070000029300094005
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13127
Joined: 15 May 2006
Location: Berlin

Re: Name in Puzzle

Postby Hajime » Sat Dec 18, 2021 2:13 pm

It is about the same difficulty; 5 removed clues do not make it much harder (some more Pointing/Claiming)

Code: Select all
Eliminated candidates per Method/Sudoku (Hajime)              Eliminated candidates per Method/Sudoku (m_b_metcalf)
   
Method   \  Sudoku |   SER |     1     2     3     4     5    Method   \  Sudoku |   SER |     1     2     3     4     5
                   |-------|------------------------------                       |-------|------------------------------
Not counted elims  |     0 |   137    87   138   107    77    Not counted elims  |     0 |   132    96   146   103    92
Naked Singles      |   0.1 |    32    21    24    26    17    Naked Singles      |   0.1 |    33    24    32    29    12
Hidden Singles     |   0.2 |    52    73    47    53    58    Hidden Singles     |   0.2 |    61    53    35    45    72
Naked Single   [1] |   2.5 |     7     0    11     2     0    Naked Single   [1] |   2.5 |     7     0     0     0     0
Naked Pair     [2] |     3 |     4     1    11     8     3    Naked Pair     [2] |     3 |     4     1     1     4     4
Naked Triple   [3] |   3.6 |     1    16     8     4     0    Naked Triple   [3] |   3.6 |     1     0     0     0     0
Naked Quad     [4] |     5 |     4     8    12     0     0    Hidden Quad    [5] |   5.4 |     4     2     0     9     0
Hidden Quad    [5] |   5.4 |     4     2     0    13     0    Pointing/Claiming  |   2.8 |    24    56    64    48     6
Hidden Triple  [6] |     4 |     0     0    11     0     0    XY-Wing        [3] |   4.1 |     3     0     0     0     0
Hidden Pair    [7] |   3.4 |     0     0     1     4     0    XY-chain      [10] |   7.2 |     0     2     0     0     0
Hidden Single  [8] |   2.5 |     0     0     2     1     0                       |-------|------------------------------
Pointing/Claiming  |   2.8 |     3     8    18    13     3    Eliminated Cand's  |  1205 |   269   234   278   238   186
XY-Wing        [3] |   4.1 |     3     0     0     0     0    Sum(SER * Cand's)  | 791.4 | 149.7   198 192.4 206.9  44.4
XY-chain      [10] |   7.2 |     0     2     0     0     0   
                   |-------|------------------------------   
Eliminated Cand's  |  1137 |   247   218   283   231   158   
Sum(SER * Cand's)  | 747.8 |   109 164.9 263.9 179.3  30.7   
   
Initial Candidates :  1137                                    Initial Candidates :  1205
Maximum SER rating :   7.2 <- Approach                        Maximum SER rating :   7.2 <- Approach
Labour rating      : 747.8 <- Experimental rating             Labour rating      : 791.4 <- Experimental rating
Time needed        : 00:00:01.498                             Time needed        : 00:00:01.689
User avatar
Hajime
 
Posts: 1011
Joined: 20 April 2018
Location: Netherlands

My Name in Quintuple X Puzzle

Postby m_b_metcalf » Sat Dec 18, 2021 3:36 pm

Hajime wrote:And I cannot recognize your name in the puzzle :lol:


Quintuple X-sudoku, very easy:
Code: Select all
 6               8                       
 1 2           3 7                       
 7   5       1   9                       
 5     3   6     4 9 8 5                 
 4       9       5   1                   
 3               6   2                   
 9               2   7                   
 8               3   5                   
 2 4           9 1 2 4 3                 
             2       3                   
             1     7                     
             5   8                       
             9 1         8 4 7 1 9 5 2 6 3
             7   4       1 3             8
             3     4     2 5             
                         7 1             
                         3 6 5 9 7 8 1 4 2
                         4 9             
                         6 2             
                         5 8             9
                         9 7 3 5 2 4 8 1 6


Code: Select all
6.......812.....377.5...1.95..3.6..44...9...53.......69.......28.......324.....91
3.6..4985.9...5.1......6.2......2.7......3.5.....91243...2...3....1..7.....5.8...
..2.7......3.5.....91243...2...3....1..7.....5.8......91....8477.4...13.3..4..25.
.3.......7....................847195...13....4..25.......71.......365978...49....
84719526313......825.......71.......36597814249.......62.......58......9973524816


With fewer clues, but still easy:
Code: Select all
                                         
 1 2           3 7                       
 7   5       1   9                       
 5     3   6     4   8                   
 4       9       5   1                   
 3               6   2                   
 9               2   7                   
 8               3   5                   
 2 4           9 1                       
             2       3                   
             1     7                     
             5   8                       
             9 1           4 7 1 9 5
             7   4         3             
             3     4       5             
                           1             
                           6 5 9
                           9             
                           2             
                           8             
                           7 3 5 2 4

Code: Select all
.........12.....377.5...1.95..3.6..44...9...53.......69.......28.......324.....91
3.6..4.8..9...5.1......6.2......2.7......3.5.....91......2...3....1..7.....5.8...
..2.7......3.5.....91.4....2...3....1..7.....5.8......91.....477.4....3.3..4...5.
.3.......7.....................47195....3....4...5........1........65978....9....
.47195....3........5........1........659......9........2........8........73524...
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13127
Joined: 15 May 2006
Location: Berlin

Re: Name in Puzzle

Postby Hajime » Wed Dec 22, 2021 3:36 pm

Nice, Mike
User avatar
Hajime
 
Posts: 1011
Joined: 20 April 2018
Location: Netherlands


Return to Sudoku variants