I have found an interesting sub-species of Sudoku grids, based on the cycle structure. The term "cycle" is described here, and the following examples should serve to illustrate the concept.
On the left we have the cycles for {AB} = {36}. There are 3 cycles, of lengths 2, 3 and 4.
On the right we have {AB} = {59}, for which there is a single cycle of length 9.
Some essential facts:
- there are 36 digit pair {AB} possibilities
- for each AB, there are from 1 to 4 cycles, and the lengths of these cycles will sum to 9
- for any AB, there are 8 different combinations of cycle lengths
- 9
- 7 + 2, 6 + 3, 5 + 4
- 5 + 2 + 2, 4 + 3 + 2, 3 + 3 + 3
- 3 + 2 + 2 + 2
- the total number of cycles (TNC) in any grid is thus in the range [36, 144]
A monocyclic grid is one which every AB pair has cycle length 9, and thus the grid has only 36 cycles in total. There are only 9 grids with this property. In this list they are tagged with band# and automorphism count (7 of the 9 are automorphic):
- Code: Select all
123456789456789123798231564275943618369815472841627395587362941612594837934178256 # 14
123456789456789123897231645231564978645978231978312564369147852582693417714825396 # 17 NA = 6
123456789456789123897231645231564978645978231978312564369825417582147396714693852 # 17 NA = 6
123456789456789231789123645231564897564897312897231456375618924618942573942375168 # 27 NA =36
123456789456789231789123645231564897564897312897231456375942168618375924942618573 # 27 NA =18
123456789456789231789123645231564897564897312978312564395248176617935428842671953 # 27 NA = 6
123456789456789231789123645231564897564897312978312564395671428617248953842935176 # 27 NA = 6
123456789456789231789123645231564978564897123897231564375942816618375492942618357 # 27 NA =36
123456789457289163698713254261847935579362841834591627315928476786134592942675318 # 354
There only 8 cases of "almost" monocyclic grids, these have 35 cycles of length 9, with one {AB} pair divided into 2 or 3 cycles, so TNC = 37 or 38:
- Code: Select all
123456789456789123798213564247138956319675248685942317572364891834591672961827435 # 12
123456789456789123798213564249561837637894251815327496372945618564138972981672345 # 12
123456789456789123798231645267198534581643972934572816349867251672315498815924367 # 15 NA = 2
123456789456789123798231645267843591815697234934125867372918456581364972649572318 # 15
123456789456789132789231564218647395394518627675923841531894276847162953962375418 # 25 NA = 2
123456789456789132789231564234678915861925473975143628317894256592367841648512397 # 25
123456789456789132789231564235697418671842395948315627394178256567923841812564973 # 25
123456789457189623689732145236578914795214836841963257378625491564891372912347568 # 250