MOAG

For fans of Killer Sudoku, Samurai Sudoku and other variants

MOAG

Postby Ruud » Sat Oct 27, 2007 4:12 pm

This is MOAG.

You should treat MOAG with some respect, for she is the Mother Of All Gattai

Image

MOAG has 61 constituent Sudoku grids, 4041 cells and 36369 initial candidates.

The given numbers for each grid (in order of appearance):

004080907005070010736000000000007090570009003000530270900001000040802000100040000
100403079040100300000075001091060020800730000400501006000000000000006000000000000
300010780815040000000008001190002070050860002008090100000200000000500000000000000
016040007000080246400600000060200059900013060007060100000001000000002000000000000
470105006005008010800640000040020670000091008900406003000000000000300000000000000
107020500050090100000000638010700000200300016069041000000800007000904050000030004
000900000000600000000045000360020000004500060007000102000008000000060000000007000
000000000000052000000100000001960004800001790000007100000004000000800000000010000
000306000000000000000000000006203500000894000090070040000000000000000000000401000
000000000000530000000007000200084900018200005007300000000700000000008000000010000
000009000000002000000530000000080067070004900604000800000100000000020000000600000
900016000060200000000500000210074000009180000804002090040000000700800000508009000
000780000000043000000000000700060080230908400060070002000090000000100000000004000
000073000000060000000080000500002700000007016073050200000000000000600000000500000
000450000000090000000060000001300007720600000009040210000000000000001000000004000
000064000000230000000000000050010002008602071200090060000080000000006000000400000
000810009000009020000003000000520096000046300060300402000000080000001003000600201
000060000000000000000900000005800060090600001070059300000086000000090000000100000
000008000000901000000300000032610070000700000790000000000000000000200000000000000
000000000000307000000060000000000000003271900041905680000706000000080000000000000
000200000000109000000003000030024950000006000000000038000000000000008000000000000
000070000000000000000005000050008100100007080009520060000180000000060000000002000
160200000090370000020009000000060570250037000008400000500003000300600000006020000
000800000000007000000003000000000084473001000900570000000708000000060000000050000
000000000000009000000000000000091080000800009090304100000003000000400000000060000
000000000000800000000000000010520000500003000004609030000400000000005000000030000
000009000000400000000200000210000000000300175000068003000903000000040000000010000
000002018000018040000500020067050000000680093000001700000100004000005006000020900
000000000000003000000100000600780004000032000800410002000300000000004000000000000
000000000000009000000061000030054800007020040080096200000012000000005000000000000
000030000000000000000070000000604000108000603000803000000080000000000000000020000
000000000000400000000230000004710080030080700001390040000960000000800000000000000
000000000000200000000009000200016004000920000700084005000002000000600000000000000
009050000300200000500008000002500000950084000000030410070003000020890000890600000
000030000000060000000209000700810000641007000000000037000001000000002000000700000
000030000000500000000006000030405600000900007000061040000000000000007000000000000
000050000000007000000300000005602040900005000020170000000000000000200000000000000
000060000000030000000405000000054008000800247740000000000500000000300000000002000
000080700000003009000700008000002800000690045039070000000900050000064080000001076
000400000000060000000038000010087600060900008007500030000800000000000000000020000
000000000000200000000000000360000000000900000049570030000700000000104000000005000
000000000000050000000308000014709860003812900000000000000020000000107000000000000
000000000000009000000000000000000074000004000040063910000002000000805000000400000
000009000000040000000630000004390070300004050090007100000001000000000000000070000
208007000100300000030000000302001090001980000640035000000800000010500000700024000
000006000000400000000050000020060008610802500800030060000000000000073000000520000
000600000000700000000000000015090600000006053900003400000030000000050000000064000
000004000000003000000000000001090730980400000002300004000070000000040000000630000
000800000000009000000050000600070090004302057050090004000000000000930000000015000
000800902000002008000000050070400509000069100000170026000005000000001030000640005
000008000000010000000002000004000209001800070960020000000081000000900000000200000
000090000000100000000008000000005700500004290008270006000400000000081000000000000
000802000000000000000000000050010070000598000009407500000000000000000000000306000
000070000000004000000600000003500000054800001800036500000003000000460000000000000
000800000000030000000200000607000500090008700000070036000380000000001000000009000
400020000070103000600007000000270830230001004000006010345000000002010060001030502
000000000000005000000000000100702009200350000068040020000021008080900100900807042
000000000000800000000400000003070400070960005560008070000001004791020000400080290
000000000000009000000003000002080600600027080010600025200500000000040913064030007
000000000000400000000000000400602009000014005080030420500780000001006050760501002
000040007000207010000500002013092000500800064080100000000000486050030900106020300


Here is MOAG's solution:

214385967895276314736194528328417695571629843469538271983761452647852139152943786
162483579745129368983675241391864725856732194427591836638957412574216983219348657
329615784815947623647328951193452876754861392268793145586239417471586239932174568
216345897735189246498627315361278459942513768587964132829451673654732981173896524
479135286635278914812649735541823679326791458987456123258914367764382591193567842
187623549356498172924157638413762985275389416869541723542816397638974251791235864
452971638139682574786345219361724985824519763597836142273158496915463827648297351
412379586983652471657148932571963824864521793329487165235794618196835247748216359
417356829239187654568942173746213598125894736893675241954768312381529467672431985
673491258981532764524867193256184937318279645497356812869745321135628479742913586
367819542591472638842536791935281467278364915614795823789143256156927384423658179
985416273467238915321597648213974856679185432854362197146723589792851364538649721
496781235827543196351629748714362589235918467968475312142897653579136824683254971
618273954247965381359481672561842793824397516973156248192738465735614829486529137
312457869467892135985163742651329487724618953839745216173286594546971328298534671
321564789479238156586179423654713892938642571217895364163987245745326918892451637
256814739384769125179253648413527896892146357765398412631972584527481963948635271
589763142364218579721945683245831967893672451176459328957386214412597836638124795
653478192824961735971325486432619578185743629796582314367894251519236847248157963
465829173829317546137564298952648317683271954741935682394756821516482739278193465
594287163328169745671453892137824956845396217269715438753942681416578329982631574
245879631918346527637215948452638179163497285879521463524183796781964352396752814
163248957895376412724519638431862579259137864678495123512983746387654291946721385
214895367836427519795613248152936784473281956968574132321748695587369421649152873
251687394847239516963145278472591683135826749698374125714953862386412957529768431
821946753739852416465371982613524897598713264274689531157468329342195678986237145
681739524329456781574281396213574869846392175795168243458923617132647958967815432
796432518352718649814569327167953482245687193983241765529176834431895276678324951
746598321291643587385127649623785914417932865859416732164359278578264193932871456
695238714421579386873461529236154897957823641184796235569312478742985163318647952
862439157957168342431275986293614875148752693675893421516987234729341568384526719
329671458678459132145238967564712389932584716781396245817963524293845671456127893
617843529958267431432159678285716394341925867769384215873492156594631782126578943
289357164316249578547168932432516897951784326768932415175423689624891753893675241
278134569193568742456279318732815496641397285589426137327681954814952673965743821
478239516163548729952176384731425698624983157895761243216394875589617432347852961
234956817568417293719328456375692148941835672826174539693581724187249365452763981
524169873671238594893475126312754968956813247748926315169587432287341659435692781
156289734782143569943756128465312897271698345839475612618927453327564981594831276
689451327753269814241738965412387659365912748897546132536894271924173586178625493
954837216673241589821659347368412975517983462249576831495768123732194658186325794
875241693432956187961378452214739865653812974798465231587624319349187526126593748
724358169365149287981627435536291874192784653847563912678932541419875326253416798
432759618659148327781632594214395876367814952895267143923481765578926431146573289
298147536167358924435296178382461795571982463649735281924813657816579342753624819
271386495586419732493257186325761948619842573847935261132694857958173624764528319
123649587658721349794385126315492678247816953986573412461238795839157264572964831
319254678526783419748169253451896732983427561672315894164972385837541926295638147
541867923326149578798253146632574891914382657857691234469728315175936482283415769
765834912431952768289716453176423589328569147594178326642395871957281634813647295
657498132342716958819352764574163289231849675968527341795681423426935817183274596
857392461624157839319648572132965784576814293948273156795426318263781945481539627
795832164264159837831764295452613978173598642689427513947281356326975481518346729
385172469926384175147695283273541896654829731819736542798213654532467918461958327
315897642482136957769245813627413589193568724854972136971384265236751498548629371
413628795578193426629547183156274839237981654984356217345862971792415368861739542
423618795817495263596273481145782639279356814368149527634521978782934156951867342
318256947945817326627439518283175469174962835569348172832691754791524683456783291
356412798481769532729853461932185674645327189817694325293571846578246913164938257
654328971918457236327169548435672189279814365186935427592783614841296753763541892
265341897498267513371589642613492758529873164784156239932715486857634921146928375


Enjoy MOAG.
Ruud
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby underquark » Sat Nov 03, 2007 11:52 pm

Very,very good. Guess I can't use this one to time the boiling of an egg.

Any way of listing it as lines with separators so that it can be pasted into a spreadsheet? I'm currently tackling it in Paint Shop Pro but it's cumbersome. Also, do you have any plans for GMOAG (Grandmother...) with 9 grids across/down each edge (linked together by 8) and each centre cell forming part of a Sudoku?
underquark
 
Posts: 299
Joined: 06 September 2005

Postby udosuk » Sun Nov 04, 2007 12:50 am

underquark wrote:Any way of listing it as lines with separators so that it can be pasted into a spreadsheet? I'm currently tackling it in Paint Shop Pro but it's cumbersome. Also, do you have any plans for GMOAG (Grandmother...) with 9 grids across/down each edge (linked together by 8) and each centre cell forming part of a Sudoku?

UQ, I suppose if you're willing to take a few minutes to set up the spreadsheet you can copy-and-paste your way to create this grid.

A few tips:

1. The mid function is useful: e.g. mid(A81,5,1) retrieves the 5th character of the string in A81 onto the cell.

2. When copy-and-pasting remember to use the $ feature to "fix" the reference. For example, when I try to create a 9x9 grid from an 81-char string, I first put in the numbers 1..9 in the cells D1 to L1, the numbers 0..8 in the cells B3 to B11. Then, with the 81-char string in cell A14 (pre-formatted as a text cell), I can set up D3 as "=mid($A$14,$B3*9+D$1,1)", and then copy-and-paste this formula to all grids from D3 to L11. For this MOAG grid you need to work a bit more (after all, it has 6x6=36 of "main grids" plus 5x5=25 "interlocking grids" which you only need to take care of b24568).

3. After you get all the cells as function results, you can copy-and-paste the whole thing to another application such as Notepad and then copy-and-paste it from Notepad back to another sheet. Then you will get the whole grid as a large bunch of data.

4. You can easily change all the 0 cells to blank cells by using the "Replace All" command (Ctrl-H) and replace all appearance of 0s to nothing.

I'm sure you know most of these things. Just a matter of whether you want to spend your effort for this thing. It should take me less than 15 mins to set it up but hey, I don't have the subsequent 100 hrs to solve this monster.:)

BTW, there is another one of these available in here:

http://www.djape.net/sudoku/forum/viewtopic.php?t=1162

So your set-up spreadsheet can at least work for 2 puzzles.:)

Not sure if Ruud has posted more elsewhere though.
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby JL » Sun Nov 04, 2007 2:14 am

Am currently aware of only this and (now) the one on DJApe. The one here is the same as the one on the SudoCue forum.

These puzzles get any bigger and I may have to look for a plotter to print it out!
JL
 
Posts: 36
Joined: 19 December 2006

Postby underquark » Sat Nov 22, 2008 5:59 am

One year on and I still haven't finished. Determined to do so without pencil marks or PC.
underquark
 
Posts: 299
Joined: 06 September 2005

Postby udosuk » Sat Nov 22, 2008 12:49 pm

underquark, I admire your perservance.:)
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby enxio27 » Sat Nov 22, 2008 3:38 pm

underquark wrote:One year on and I still haven't finished. Determined to do so without pencil marks or PC.

Without pencil marks?!?!?!? You're braver than I am!

When you finish that one, here's a whole listing of Ruud's other specialty puzzles:

http://www.rcbroughton.co.uk/sudoku/forum/viewtopic.php?f=4&t=13
User avatar
enxio27
 
Posts: 532
Joined: 13 November 2007

Postby underquark » Sat Dec 20, 2008 3:55 am

Life being too short (and eye-strain setting in) I have relented and created an Excel spreadsheet that allows me to pencil-mark.
underquark
 
Posts: 299
Joined: 06 September 2005


Return to Sudoku variants