There is a strong link between grid automorphism (GA) and (two) row automorphism (RA).
The number of potential minlex grid candidates (NGC) in Michael's minlex algorithm is NGC = 2 * NRP * NRA. Let MR = the minimum two-row rank, then these values are defined as:
- NRP is the # of row-pairs having rank MR, max = 18
- NRA is the # of row automorphisms fixed by MR, max = 18
- NGC is # of minlex grid candidates, ie 2 x NRP x NRA, max = 2 x 18 x 18 = 648
- NGA is the # of grid automorphisms, which is the number of candidates that produce identically scoring outcomes, ie the best minlex grid
Notes:
- the max row-pair count of 18 comes from 9 row-pairs in the grid itself, and 9 in its transpose (col-pairs)
- the doubling factor in NG comes from the fact that for any pair of rows, there are two candidates to consider, as we can swap the rows
For the MC grid, the rank is 1, every row-pair has rank 1, NRA = 18, NGC = 648, and every grid candidate leads to an identical outcome, ie NGA = 648.
Here is a table of the 35 most automorphic grids (NGA = 27 to 648). Each grid is tagged with NGA, MR, NRA, NRP and NGC:
Most Automorphic Grids: Show - Code: Select all
123456789456789123789123456231564897564897231897231564312645978645978312978312645 # 648 1 18 18 648
123456789456789123789123456267591834591834267834267591375618942618942375942375618 # 162 1 18 18 648
123456789456789123789123456231564897564897231897231564312978645645312978978645312 # 108 1 18 18 648
123456789456789123789123456231564978564978231978231564312645897645897312897312645 # 108 1 18 9 324
123456789457289163689173452245968317316745928978312645564897231731524896892631574 # 108 9 3 18 108
123456789456789123789123456231564978564897312897231645312978564645312897978645231 # 72 1 18 18 648
123456789457893612986217354274538196531964827698721435342685971715349268869172543 # 72 14 6 6 72
123456789456789123789123456231564897564897231897231564348672915672915348915348672 # 54 1 18 9 324
123456789456789123789123456231564897564897231897231564348915672672348915915672348 # 54 1 18 9 324
123456789456789123789123456234567891567891234891234567318642975642975318975318642 # 54 1 18 18 648
123456789456789123789123456234567891567891234891234567345678912678912345912345678 # 54 1 18 9 324
123456789456789123789123456234567891567891234891234567372615948615948372948372615 # 54 1 18 9 324
123456789456789123789123456235964817817235964964817235392641578578392641641578392 # 54 1 18 9 324
123456789456789123789123456267591348591834672834267915375618294618942537942375861 # 54 1 18 18 648
123456789456789123789123456267591834591834267834267591375942618618375942942618375 # 54 1 18 18 648
123456789456789123897231564231564978564978231789312645312645897645897312978123456 # 54 1 18 9 324
123456789456789231789312456231645978645978312978123645312564897564897123897231564 # 54 3 9 9 162
123456789457289163689173452235964817816735924974812635392641578568397241741528396 # 54 9 3 18 108
123456789456789123789123456231564897564897231978312645312645978645978312897231564 # 36 1 18 9 324
123456789456789123789123456231564978564978231978231564312897645645312897897645312 # 36 1 18 9 324
123456789456789123789123456231564978645897231897312564312645897564978312978231645 # 36 1 18 9 324
123456789456789123789123456231597864597864231864231597312678945678945312945312678 # 36 1 18 18 648
123456789456789123789123456231597864597864231864231597312948675675312948948675312 # 36 1 18 12 432
123456789456789123789123456231678945678945231945231678312597864597864312864312597 # 36 1 18 9 324
123456789456789123789123456231678945678945231945231678312894567567312894894567312 # 36 1 18 9 324
123456789456789123789123456231897564564231897978645312312978645645312978897564231 # 36 1 18 9 324
123456789456789123789123456231897645564312897978564231312978564645231978897645312 # 36 1 18 9 324
123456789456789123789132465231564978564978231978213546312645897645897312897321654 # 36 1 18 9 324
123456789456789123798132465231564897564897231879213546312645978645978312987321654 # 36 1 18 3 108
123456789456789231789123645231564897564897312897231456375618924618942573942375168 # 36 3 9 18 324
123456789456789231789123645231564978564897123897231564375942816618375492942618357 # 36 3 9 18 324
123456789457189236968372514291738465374265198685941327546813972732694851819527643 # 36 4 1 18 36
123456789457189326869372514214965873635847192978213465381624957546798231792531648 # 36 6 3 12 72
123456789456789123789123456231897564564231897897564231348672915672915348915348672 # 27 1 18 9 324
123456789456789231789312456231564978564978312978123564312645897645897123897231645 # 27 3 9 9 162
As one might expect, MR = 1 is the most common rank. A couple of entries stand out for me:
- Code: Select all
123456789457289163689173452245968317316745928978312645564897231731524896892631574 # 108 9 3 18 108
This grid has rank 9, and all 108 grid candidates produce the same result (NGA = NGC).
- Code: Select all
123456789457893612986217354274538196531964827698721435342685971715349268869172543 # 72 14 6 6 72
This is also has NGA = NGC, and has the maximum rank possible for a full grid (14). MR = 15 exists only in 2-row form, as we can't actually construct a grid that does not have some row-pair with a lower rank.