- L_NAKED1
L_NAKED2
L_HIDDEN1
L_LOCKED1
L_LOCKED2
L_NAKED3
L_HIDDEN2
L_HIDDEN3
L_NAKED4
L_HIDDEN4
L_XWING 'includes basic and finned
L_SWORDFISH 'includes basic and finned
L_XY
L_XYZ 'generalized (allows 2-3 cell pilots)
L_WXYZ 'generalized (allows 2-4 cell pilots)
L_VWXYZ 'generalized (allows 2-5 cell pilots)
L_XYRING4
L_XYCHAIN4
L_XYRING5
L_XYCHAIN5
L_SUEDECOQ
L_ALS1 'xz only, same as xy-wing, xyz-wing, etc
L_ALS2 'xz only
L_TURBOT4 'same as locked candidates
L_TURBOT5 'includes basic and grouped
L_ALS3 'xz only
L_ALS4 'xz only
L_JELLYFISH 'includes basic and finned
L_SQUIRMBAG 'includes basic and finned
L_TURBOT6 'includes basic, finned, and grouped
L_TURBOT7 'includes basic and grouped
L_COLOR1 'type 1 includes basic and some grouped
L_COLOR2 'type 2 includes basic and some grouped
L_COLOR3 'type 3 includes basic and some grouped
L_UNIQUE1 'type 1
L_UNIQUE2 'includes types 2 and 2B
L_UNIQUE3 'includes types 3 and 3B
L_UNIQUE4 'includes types 4 and 4B
..24...............91.56....3....6.9...6.1..41.6.35..2........1..92...3.38.....47
which proceeded to:
..24....3..3..2....91356.2853..2461992.6.1354146935..22.45.3..1.1924..3.385169247
with candidates (* are the jellyfish, x are the deletions):
- Code: Select all
+-------------+----------+--------------+
| 678* 56 2 | 4 19 78*| 1579* 679* 3 |
|4678x 567 3 | 78 19 2 |14579x 679x 56|
| 47* 9 1 | 3 5 6 | 47* 2 8 |
+-------------+----------+--------------+
| 5 3 78 | 78 2 4 | 6 1 9 |
| 9 2 78 | 6 78 1 | 3 5 4 |
| 1 4 6 | 9 3 5 | 78* 78* 2 |
+-------------+----------+--------------+
| 2 67 4 | 5 78 3 | 89 689 1 |
| 67* 1 9 | 2 4 78*| 58 3 56 |
| 3 8 5 | 1 6 9 | 2 4 7 |
+-------------+----------+--------------+
For the finned squirmbag:
........82.713..6.46...7.1..7.....42....64...8..........3.....9..53..1....25..8.7
........82.7138.6.468..7.1..768...42....64.8.8.4........3..2.59..53..12...25..837
- Code: Select all
+---------------+---------------+---------------+
| 1359 1359 19 | 46 2459x 569x| 2579 79 8 |
| 2 59* 7 | 1 3 8 | 459* 6 45 |
| 4 6 8 | 29* 259* 7 | 2359* 1 35 |
+---------------+---------------+---------------+
| 1359* 7 6 | 8 159* 1359*| 359* 4 2 |
| 1359 12359 19 | 279 6 4 | 3579 8 135 |
| 8 12359 4 | 279 1259 1359 | 35679 79 1356 |
+---------------+---------------+---------------+
| 17 18 3 | 46 78 2 | 46 5 9 |
| 679* 489* 5 | 3 78 69*| 1 2 46 |
| 69* 49* 2 | 5 149* 169*| 8 3 7 |
+---------------+---------------+---------------+
This one actually contained 2 7-node Grouped Turbot Chains (p-group elements, g-guards) with a broken wing
.5.....6.2..1..........3519...7...95...6.....7....2..3.9.27.1.4.........53....2..
.5.9.7.622.91563......23519...7...959.563.7217..592..3.9.275134...3..95.53...92..
- Code: Select all
+---------------+-------------+-------------+
| 13 5 13 | 9 48 7 | 48 6 2 |
| 2 48* 9 | 1 5 6 | 3 478 78 |
| 468p 67 4678p| 48* 2 3 | 5 1 9 |
+---------------+-------------+-------------+
| 3468 26 2348 | 7 148x 148g| 68 9 5 |
| 9 48x 5 | 6 3 48x| 7 2 1 |
| 7 16 168 | 5 9 2 | 468 48 3 |
+---------------+-------------+-------------+
| 68 9 68 | 2 7 5 | 1 3 4 |
| 14 127 1247 | 3 168 148x| 9 5 678 |
| 5 3 147 |48* 1468g 9 | 2 78 678 |
+---------------+-------------+-------------+
There are 24997 more. I'd be happy to share them all as well as my solver if you need it