tarek wrote:had another look and it looks to be identical to my Sudoku^2 (which is slightly different from the classic orthogonal sudoku)
The above uses the unit box of 3x3 instead of the unit box of 2x2 the and having 3x3 9x9 grids instead of 9x9 9x9 grids to make it a full Sudoku^2
tarek wrote:I suspect that the 256 version that Mathimagics is referring to is a 4x4 16x16 which will be a 64x64 grid (64 different pairings)
Serg wrote:It's unbelievable! Just to find a pair of orthogonal Sudokus is not simple thing, but to find the set of mutually compatible 81 pairs of orthogonal Sudokus is very surprising. Are all 81 pairs of orthogonal Sudokus essentially different?
Mathimagics wrote:tarek wrote:had another look and it looks to be identical to my Sudoku^2 (which is slightly different from the classic orthogonal sudoku)
The above uses the unit box of 3x3 instead of the unit box of 2x2 the and having 3x3 9x9 grids instead of 9x9 9x9 grids to make it a full Sudoku^2
Tarek, my friend, have a third look! The image is just a partial one ... the full grid is too big to attach directly, so I attached the complete 81 x 81 image in a zip file.
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. 21 .. 44 .. .. .. .. 14 .. 31 .. .. ..
.. .. .. .. .. .. 42 .. .. 12 .. .. .. .. .. ..
.. 31 .. .. .. .. .. .. .. .. .. .. .. .. 21 ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. 44 .. .. .. .. .. 21 31 .. .. .. .. .. 14 ..
.. .. 42 .. .. .. .. .. .. .. .. .. .. 12 .. ..
.. .. .. .. .. 31 .. .. .. .. 21 .. .. .. .. ..
.. .. .. .. .. 23 .. .. .. .. 33 .. .. .. .. ..
.. .. 14 .. .. .. .. .. .. .. .. .. .. 44 .. ..
.. 12 .. .. .. .. .. 33 23 .. .. .. .. .. 42 ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. 23 .. .. .. .. .. .. .. .. .. .. .. .. 33 ..
.. .. .. .. .. .. 14 .. .. 44 .. .. .. .. .. ..
.. .. .. 33 .. 12 .. .. .. .. 42 .. 23 .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
3. .. .. .. .. .. .. 1. 2. .. .. .. .. .. .. 1.
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. 34 .. .. 31 .. .. .. .. 11 .. .. 23 .. ..
.. .. .. 4. 1. .. .. .. .. .. .. 2. 1. .. .. ..
.. .. .. 3. 4. .. .. .. .. .. .. 2. 3. .. .. ..
.. .. 21 .. .. 23 .. .. .. .. 13 .. .. 22 .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
3. .. .. .. .. .. .. 1. 1. .. .. .. .. .. .. 1.
3. .. .. .. .. .. .. 1. 3. .. .. .. .. .. .. 1.
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. 12 .. .. 13 .. .. .. .. 14 .. .. 11 .. ..
.. .. .. 4. 3. .. .. .. .. .. .. 2. 4. .. .. ..
.. .. .. 2. 3. .. .. .. .. .. .. 1. 3. .. .. ..
.. .. 11 .. .. 12 .. .. .. .. 23 .. .. 42 .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
3. .. .. .. .. .. .. 4. 1. .. .. .. .. .. .. 3.
tarek wrote:I hate renaming things so I may stick to using the name I used for mine unless with time I'm convinced that the terms you use to describe them have a better ring to them
14 B9 AB 63
A3 6B 19 B4
BB 13 64 A9
69 A4 B3 1B
Mathimagics wrote:Now, about "Sudoku^3" ... I think I've worked out what you mean.
Here is a 4 x 4 box that might be part of a 16 x 16 orthog pair grid:
- Code: Select all
14 B9 AB 63
A3 6B 19 B4
BB 13 64 A9
69 A4 B3 1B
Serg wrote:I think Magic Giant Sudoku is just another representation of "traditional" N^4 x N^4 Sudoku.
The Magic Giant Sudoku is an 81 x 81 Sudoku ...