Locked 9.0

Post puzzles for others to solve here.

Locked 9.0

Postby AnotherLife » Sat Dec 18, 2021 5:45 pm

This puzzle (Berthier 106108) has several short solutions without complicated chains. Please, try to solve it manually.
Code: Select all
.2.....8...71......96..7.......6...43.9...85..6...13.......5.3..4.2.8...9....41..

|.2.|...|.8.|
|..7|1..|...|
|.96|..7|...|
|---+---+---|
|...|.6.|..4|
|3.9|...|85.|
|.6.|..1|3..|
|---+---+---|
|...|..5|.3.|
|.4.|2.8|...|
|9..|..4|1..|
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia

Re: Locked 9.0

Postby marek stefanik » Mon Dec 20, 2021 1:00 am

Code: Select all
.-------------------.-------------------.-------------------.
| 145    2     1345 | 3459  3459    369 | 679–5 8     1379–5|
| 458    58–3  7    | 1     2458–39#369 |#2569 #2469 #2359  |
| 1458   9     6    | 3458  23458   7   |#25   #24    13–25 |
:-------------------+-------------------+-------------------:
| 2578   578   258  | 3589  6       39  | 279   1     4     |
| 3      1     9    | 47    47      2   | 8     5     6     |
| 24578  6     2458 | 589   589     1   | 3     279   279   |
:-------------------+-------------------+-------------------:
| 12678  78    128  | 679   179     5   | 4     3     2789  |
| 1567   4     135  | 2     1379    8   | 5679  679   579   |
| 9      3578  2358 | 367   37      4   | 1     267   2578  |
'-------------------'-------------------'-------------------'
234569 in 6 cells => –3r2c2, –39r2c5, –5b3p139, –2r3c9

Code: Select all
.---------------.---------------.-----------------.
| 15    2    3  | 4    59   69  | 679   8    179  |
| 4    a58   7  | 1    258  369 | 2569  69   2359 |
| 158   9    6  | 358  258  7   | 25    4    13   |
:---------------+---------------+-----------------:
| 2578  78–5d58 | 358  6    39  | 279   1    4    |
| 3     1    9  | 7    4    2   | 8     5    6    |
| 2578  6    4  | 58   589  1   | 3     79   279  |
:---------------+---------------+-----------------:
| 6    b78   2  | 9    1    5   | 4     3    78   |
| 57    4    1  | 2    3    8   | 5679  679  579  |
| 9     3   c58 | 6    7    4   | 1     2    58   |
'---------------'---------------'-----------------'
(5=8)r2c2 – r7c2 = r9c3 – (8=5)r4c3 => –5r4c2, stte

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Locked 9.0

Postby Cenoman » Mon Dec 20, 2021 10:58 am

Nice example of an ALS triply linked to an AALS, Marek !
Another first step:
Code: Select all
 +------------------------+------------------------+------------------------+
 |  145     2      1345   | b459-3 b459-3  ca69-3  | c679-5  8     c179-35  |
 |  458     358    7      |  1      2458-39 a369   |  2569   2469   2359    |
 |  1458    9      6      | e3458  e23458    7     |  25     24    d13-25   |
 +------------------------+------------------------+------------------------+
 |  2578    578    258    |  3589   6        39    |  279    1      4       |
 |  3       1      9      |  47     47       2     |  8      5      6       |
 |  24578   6      2458   |  589    589      1     |  3      279    279     |
 +------------------------+------------------------+------------------------+
 |  12678   78     128    |  679    179      5     |  4      3      2789    |
 |  1567    4      135    |  2      1379     8     |  5679   679    579     |
 |  9       3578   2358   |  367    37       4     |  1      267    2578    |
 +------------------------+------------------------+------------------------+

1. (3=69)r12c6 - r1c45 = (967-1)r1c679 = (1-3)r3c9 = (3)r3c45 loop =>
-39 r2c5, -5 r1c79, -3 r1c4569, -25 r3c9; same resolution state as Marek's
The above AIC is derived from the spotted pattern: ALS XY-loop (9=1)r1c1345 - (1=3)r2c14578 - (3=9)r12c6 loop.

2. Similar end with Y-Wing (5=8)r2c2 - (8=7)r7c2 - (7=5)r8c1 => -5 r13c1; ste
Cenoman
Cenoman
 
Posts: 3000
Joined: 21 November 2016
Location: France

Re: Locked 9.0

Postby AnotherLife » Mon Dec 20, 2021 1:51 pm

Thanks for your solutions!
In my previous post, Cenoman found a multi-sector locked set, which was equivalent to doubly linked ALS's. As far as I understand, in this example, the set r2c6789, r3c78 is also an MSLS, but now it is equivalent to triply linked ALS (r3c78) and AALS (r2c6789).

Actually, there is another variant of step 1 if we allow two digit links such as (4|5) - (4&5).
Code: Select all
.--------------------.----------------------.---------------------.
| a145   2     3-145 | b3459  b3459    b369 | 679-5  8    e1379-5 |
| 458    358   7     | 1      2458-39  b369 | 2569  2469  2359    |
| 1458   9     6     | c3458  c23458   7    | 25    24    d13-25  |
:--------------------+----------------------+---------------------:
| 2578   578   258   | 3589   6        39   | 279   1     4       |
| 3      1     9     | 47     47       2    | 8     5     6       |
| 24578  6     2458  | 589    589      1    | 3     279   279     |
:--------------------+----------------------+---------------------:
| 12678  78    128   | 679    179      5    | 4     3     2789    |
| 1567   4     135   | 2      1379     8    | 5679  679   579     |
| 9      3578  2358  | 367    37       4    | 1     267   2578    |
'--------------------'----------------------'---------------------'

(1=4|5)r1c1 - (4&5=3)b2p1236 - r3c45 = (3-1)r3c9 = r1c9 - r1c1 loop => -145 r1c3, -5 r1c79, -39 r2c5, -25 r3c9
This step leads to the same resolution state as in the previous solutions.
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia

Re: Locked 9.0

Postby Cenoman » Tue Dec 21, 2021 10:19 pm

AnotherLife wrote:In my previous post, Cenoman found a multi-sector locked set, which was equivalent to doubly linked ALS's. As far as I understand, in this example, the set r2c6789, r3c78 is also an MSLS, but now it is equivalent to triply linked ALS (r3c78) and AALS (r2c6789).

Marek's first step can be presented as two different ALS-AALS chains:
(3=6|9)r2c6 - (69245=3)b3p45678 loop: AALS (369)r2c6, ALS (234569)b3p45678, RCs (3,6,9)
or (4=25)r3c78 - (2|5=3694)r2c6789 loop: AALS (234569)r2c6789, ALS (245)r3c78, RCs (2,4,5)
Both chains are equivalent to the same MSLS: 6 cells r2c6789, r3c78; 6 Links: 369r2, 245b3
PM 6x6 (symmetric)
Hidden Text: Show
Code: Select all
 3r2c6  6r2c6 9r2c6
        6r2c7 9r2c7  2r2c7  5r2c7
        6r2c8 9r2c8  2r2c8           4r2c8
 3r2c9        9r2c9  2r2c9  5r2c9
                     2r3c7  5r3c7
                     2r3c8           4r2c8
------------------------------------------
-3r2c25       -9r2c5 -2r3c9 -5b3p139


For my own first step, presented as an ALS XY-loop: (9=1)r1c1345 - (1=3)r2c14578 - (3=9)r12c6 an equivalent MSLS exists: 11 cells r1c1345, r3c14578, r12c6; 11 Links 1b1, 345r1, 2458r3, 369b2

I preferred the derived AIC (3=69)r12c6 - r1c45 = (967-1)r1c679 = (1-3)r3c9 = (3)r3c45 loop for two reasons:
- first, because the eliminations are much easily derived,
- second, because the equivalent Truth-Link balance is lighter than above:
7 Truths r12c6, 679r1, 1b3, 3r3; 7 Links 369b2, r1c679, r3c9
To me, this not a MSLS (since the Truths are not all cell-truths). But I'm not sure there is a clear agreement upon MSLS definition.
PM 7x7 (symmetric)
Hidden Text: Show
Code: Select all
 3r1c6    6r1c6 9r1c6
 3r2c6    6r2c6 9r2c6
                9r1c45 9r1c6  9r1c7  9r1c9
                       6r1c6  6r1c7
                              7r1c7  7r1c9
                                     1r1c9   1r3c9
 3r3c45                                      3r3c9
----------------------------------------------------
 -3b2p125       -9r2c5 -3r1c6 -5r1c7 -35r1c9 -25r3c9
Cenoman
Cenoman
 
Posts: 3000
Joined: 21 November 2016
Location: France

Re: Locked 9.0

Postby AnotherLife » Wed Dec 22, 2021 1:35 pm

Cenoman, thanks for your detailed explaination. Now I can present my first step as an ALS-AALS loop with a PM 7x7.
Hidden Text: Show
Code: Select all
.--------------------.----------------------.---------------------.
| a145   2     3-145 | b3459  b3459    b369 | 679-5  8    e1379-5 |
| 458    358   7     | 1      2458-39  b369 | 2569  2469  2359    |
| 1458   9     6     | c3458  c23458   7    | 25    24    d13-25  |
:--------------------+----------------------+---------------------:
| 2578   578   258   | 3589   6        39   | 279   1     4       |
| 3      1     9     | 47     47       2    | 8     5     6       |
| 24578  6     2458  | 589    589      1    | 3     279   279     |
:--------------------+----------------------+---------------------:
| 12678  78    128   | 679    179      5    | 4     3     2789    |
| 1567   4     135   | 2      1379     8    | 5679  679   579     |
| 9      3578  2358  | 367    37       4    | 1     267   2578    |
'--------------------'----------------------'---------------------'

(1=4|5)r1c1 - (45=963)b2p1236 - r3c45 = (3-1)r3c9 = r1c9 loop => -145 r1c3, -5 r1c79, -39 r2c5, -25 r3c9

PM 7x7
Code: Select all
1r1c1   4r1c1  5r1c1
        4r1c4  5r1c4    3r1c4    9r1c4
        4r1c5  5r1c5    3r1c5    9r1c5
                        3r1c6    9r1c6   6r1c6
                        3r2c6    9r2c6   6r2c6
                        3r3c45                  3r3c9
1r1c9                                           1r3c9
-----------------------------------------------------
-1r1c3 -4r1c3  -5r1c379 -3r2c5   -9r2c5         -25r3c9
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia


Return to Puzzles