How does 3D relate to Local Area Set Theory?The goal is to have one simple logic that can explain all eliminations produced by any solving method. It should produce logical explanations that are easy to reason with e.g., predicting the outcome of changing logic. So far, Local Area Sets seem to achieve this simplicity and scope.
The simplicity and scope are achieved through a mixture of things, notably the use of sets and their properties in regions and along boundaries. However, much of the simplicity is from the symmetrical definition of sets as well as the extension of the dual set cover process into three dimensions. Thus, 3D is as much a part of the LAS approach as the logic of sets. Thus the name of the thread.
Static logic.LAS produces static logic meaning there are no sequential steps or starting points, even for chains. In this sense, the logic is pattern like or pictographic. Different kinds of logic become easy to recognize with practice however, this pattern and feature recognition really works best in 3D. Working with implications is a serial process where 3D is not very important and perhaps 2D is even better.
What is the impact of three dimensions on logic?To give the answer in advance, none, at least from a set perspective. LAS provides a few natural and somewhat unique distinctions between kinds of logic thus it seems that LAS might provide valuable input to the classification of logic and solving methods. But, like everything else about Sudoku, not so simple! In this light I would like to show a few of these distinctions in hope of stirring up some thoughts on the subject.
The biggest distinction is between logic with uniform rank and logic that has regions of mixed rank. Rank is basically related to the number of missing constraints. Expanding on this a little gives the following kinds of logic.
1. Rank 0. Fish like logic, from X-wing to Steve's EM solution.
2. Rank 1. Chain like, Kraken fish, ALS wings and chains.
3. Rank 2, Kraken Blossoms? AALS units.
4. Mixed rank, overlap linksets (weak sets), nrct chains, finned fish.
5. Mixed rank, overlap sets (strong sets), broken wings, proving loops.
Then there are categories that seem to make less difference to the set logic:
1. No. of dimensions, 0D, 1D, 2D, 3D.
2. No. of candidates per set.
3. Branching. (related to no. of candidates per set)
From this, the following hierarchy of distinguishing features explains the logic seen in LAS.
I. Uniform versus mixed rank.
II. Rank, 0, 1, 2 ...
III. No. of candidates per set.
IV. Branching, i.e., where to multiple links to a set go.
V. Physical dimensions, 0D, 1D, 2D, 3D.
I welcome any comments or thoughts on how all this might relate to more traditional type of logic and clasification.
Examples.I include a few visual examples to show these distinctions. In the 3D images, RC placements can be judged from the shadows on the floor (grid). Up and down is roughly aligned with digits where 9 is close to the floor and 1 is high up. Strong vs. weak sets are determined by other unseen candidates.
This nice loop is as simple as they get, rank 0, bi-value, no overlap sets and no branching.
This not so nice loop has 5 segments and must have a set/set overlap. This leads to eliminations and assignments (red and green respectively) in the loop itself. Although it has set overlap, it does not branch.
This multi digit Kraken fish has a loop and a branch, but no overlap sets. It is rank 1 everywhere and the eliminated candidate (orange cube) sees the end of the chain and the bottom green linkset.
This Kraken fish has two kinds of branches, one from a 3-candidate set, and the other from a linking set. It has no overlap sets.
This Kraken Blossom is from one of Mile Barker's solutions. It has multiple branches and is a nice example of rank 2 logic where three intersecting linksets are required for the elimination. The triple point in the box is not generally required for this kind of logic.
This simple finned X-wing has both overlapping linksets and a short branch.
This mixed rank proving loop has a set/set overlap and represents a dual loop where one of the three sides of the loop is rank 0 and the other two are rank 1. Any candidates along the rank 0 path can be removed from linksets. The rank 0 path starts at the triple point in the rear and travels to the front most candiaate in the box set. The two candidates in the vertical cell set marked with the thin black line are eliminated.