Cenoman wrote:7-link oddagon (7)r358, c178, b9 having four guardians (#)
(7)b3p145 == (7-1)r3c5 = r2c5 - (1=7)r2c8 => -7 r1c9, r3c7; ste
this helped me find a different and also nice oddagon! rly cool solution ٩( ๑╹ ꇴ╹)۶
- Code: Select all
.-------------.--------------.----------------.
| 1 478 24 | 6 47 9 | 2378 5 #237 |
| 9 478 3 | 5 147 2 | 178 7-1 6 |
|#27 5 6 | 3 17 8 |#127 4 9 |
:-------------+--------------+----------------:
| 4 6 8 |*29 5 7 | 123 *129 *23 |
| 5 2 9 | 1 3 46 | 47 67 8 |
| 3 1 7 | 8 29 46 | 24 269 5 |
:-------------+--------------+----------------:
| 6 3 5 | 27 8 1 | 9 27 4 |
|#27 9 1 | 4 6 3 | 5 8 #27 |
| 8 47 24 | 279 29 5 | 6 3 1 |
'-------------'--------------'----------------'
ALS bivalue oddagon
r38 c19 b3, guardians 3r1c9 & 1r3c7
1r3c7 => -1r2c8
3r1c9 - (3=291)r4c489 => -1r2c8
stte
edit: updated name, already knew it was called this actually just was excited to post it uwu