some examples:
1.bivalue oddagon with missing candidates, and also diagonal strong link guardian:
the 5 "#" grids formed a "bivalue oddagon"(missing candidate "9" in r1c5 but doesn't matter), we can NOT delete r9c1(1) and r1c5(23) together, otherwise, 5 "#" grids will become a "deadly loop". then, r1c5(23)==r9c1(1)--r9c4(1)==r7c6(1)--r1c6(1)==r12c6(6), so, r1c5<>6
- Code: Select all
*--------------------------------------------------------------------------------------------*
| 7 4 #69| 1268 #236 168| 5 3689 3689|
| 269 269 3| 5 7 68| 89 4 1|
| 8 1 5| 46 346 9| 2 7 36|
|------------------------------+------------------------------+------------------------------|
| 69 369 1| 268 256 568| 7 389 4|
| 4 7 8| 9 1 3| 6 2 5|
| 5 369 2| 468 46 7| 1 389 389|
|------------------------------+------------------------------+------------------------------|
| 1269 269 4| 3 569 156| 89 689 7|
| 3 5 #69| 7 8 2| 4 1 69|
| #169 8 7| 16 #69 4| 3 5 2|
*--------------------------------------------------------------------------------------------*
2.bivalue oddagon with 7 grids(and also missing candidate):
the 7 grids with "#" formed a "bivalue oddagon"(missing candidate 5 in r8c3 but doesn't matter), we can NOT delete r8c3(8) and r8c7(1) together, otherwise, 7 "#" grids will become a "deadly loop". then, r8c3(8)==r8c7(1)--r8c1(1)==r8c1(6), so, r8c3<>6, r8c3=8.
- Code: Select all
*--------------------------------------------------------------------------------------------*
| 2 8 4| 7 #56 9| #56 1 3|
| #56 7 1| 4 3 #56| 8 9 2|
| 3 9 #56| 1 2 8| 7 456 46|
|------------------------------+------------------------------+------------------------------|
| 156 136 356| 23568 4568 24567| 9 34678 1468|
| 4 2 9| 368 1 67| 36 3678 5|
| 8 136 7| 356 9 456| 2 346 146|
|------------------------------+------------------------------+------------------------------|
| 7 5 2368| 268 468 1| 346 3468 9|
| 16 4 #68| 9 568 3| #156 2 7|
| 9 136 2368| 2568 7 2456| 13456 34568 1468|
*--------------------------------------------------------------------------------------------*
3.bivalue oddagon mixed with other advanced techniques:
the 5 "#" grids formed a "bivalue oddagon", and the 6 "*" grids formed a UR (69). if r9c2<>6, then r8c23={69}(hidden pair), to avoid the 6 "*" grids formed a "deadly pattern(69)", we can find r3c1=78, then, look at the 5 "#" grids, r34c7=6(otherwise the 5 "#" grids will formed a deadly loop 78). so, r9c2(6)==r34c7(6), so, r9c7<>6, r9c2=6.
Once you have used this technique, all solved.
- Code: Select all
*--------------------------------------------------------------------------------------------*
| 678 678 5| 4 3 9| 1 678 2|
| 3 1 4| 267 8 27| 5 67 9|
| #*6789 2 *69| 67 5 1| #678 4 3|
|------------------------------+------------------------------+------------------------------|
| 1 4 78| 3 2 5| #678 9 678|
| *69 *69 2| 1 7 8| 3 5 4|
| #78 5 3| 9 4 6| 2 1 #78|
|------------------------------+------------------------------+------------------------------|
| 4 3 78| 5 6 27| 9 278 1|
| 5 *6789 *69| 278 1 3| 4 2678 678|
| 2 678 1| 78 9 4| 678 3 5|
*--------------------------------------------------------------------------------------------*
4.complex bivalue oddagon:
look at all 7 grids with symbols. if r4c1<>5, the two "%" grids r4c12 will formed a strong link(r4c1(7)==r4c2(2)). we can use r4c12 as a bivalue grid "27" in this example. on the other hand, the two "*" grids r56c3 formed another strong link(r56c3(2)==r56c3(7)), we can use r56c3 as a bivalue grid "27" in this example.
so, if we delete r4c1(5) and r4c9(5) together, all of the "#" grids will formed a "deadly loop".(r4c12(2==7), r56c3(2==7), r7c3(27), r7c9(27), r4c9(27)). it means r4c1(5)==r4c9(5). so, r4c5<>5, r6c5=5.
- Code: Select all
*--------------------------------------------------------------------------------------------*
| 2 7 3| 5 9 6| 4 1 8|
| 9 5 6| 8 1 4| 2 7 3|
| 1 4 8| 3 2 7| 6 5 9|
|------------------------------+------------------------------+------------------------------|
| %#578 %#28 9| 6 4587 1| 3 248 #257|
| 578 6 *#127| 2479 3 289| 15789 2489 1257|
| 4 3 *#127| 279 587 289| 15789 289 6|
|------------------------------+------------------------------+------------------------------|
| 3 1 #27| 49 48 5| 789 6 #27|
| 78 289 4| 1297 6 3| 15789 289 1257|
| 6 289 5| 1297 78 289| 1897 3 4|
*--------------------------------------------------------------------------------------------*