Here is the puzzle:
- Code: Select all
.-----.--.--------.--.-----.
|11 |9 |23 |9 |21 |
:--.--: '--.--. | | |
|23|11| |7 | | | |
| | |-----: |--'--+-----:
| | |20 | |12 |11 |
| '--: |--'--.--'-----:
| | |16 |18 |
:-----+-----+--. |-----. |
|11 |30 |10| |24 | |
| .--: .--: | | .--'--:
| |19| |8 | | | |22 |
| | | | |--'--: | |
| | | | |8 | | |
:--: '--+--'--. |--'--.--:
|10| |17 | |23 |3 |
| |-----'--.--'--: | |
| |16 |13 | | |
'--'--------'-----'-----'--'
and in PS format:
- Code: Select all
3x3::k:2816:2816:2306:5891:5891:5891:2310:5383:5383:5897:2826:
2306:2306:1805:5891:2310:5383:5383:5897:2826:5140:5140:1805:
3095:3095:2841:2841:5897:5897:5140:5140:4127:4127:4641:4641:
4641:2852:2852:7718:7718:2600:4127:6186:6186:4641:2852:4910:
7718:2096:2600:4127:6186:5684:5684:2852:4910:7718:2096:2106:
2106:6186:5684:5684:2623:4910:4910:4418:4418:2106:5957:5957:
839:2623:4169:4169:4169:3404:3404:5957:5957:839:
When you get stuck (after 2 placements), a '45' test will reveal that R8C236 sum up to 8. One of these 3 cells will contain a digit 1, so it cannot go into R8C9. This will leave 2 in R8C9, which in turn rules out 125 as configuration for the 3 cells. A {134} triple is the result.
R8C1 can now only contain {67}, so R9C1 must be {34}. Naked triple in N7.
A '45' test on C12 will show that R9C2 = R8C3 + 5. R9C2={89}. R8C3={34} Naked pair {34} in N7. R8C2=1.
It may be a little easier from there.
Ruud.