Killer helper program

For fans of Killer Sudoku, Samurai Sudoku and other variants

Killer helper program

Postby Ruud » Sat Apr 22, 2006 4:09 pm

I have written a new program to help you play Killer Sudoku. The name is Sum-o-Cue.

The program is freeware, contains no spyware, does not require you to install adware. Just another hobby of mine.

The beta version can be downloaded at www.sudocue.net/sumocue.php

As there is no help yet supplied with the program, I have written detailed instructions on the same webpage.

The program supports candidate markup, number filters, cage configurations, and can sum up any number of cages, cells, rows, columns, or boxes and compare them to 45, 90, or 135. This will help you find the innies and outies.

Now you can still play Killer even if you have an F in Math...

Puzzles can be dubbed into the program, opened from disk in SumoCue or Perfect Sudoku format, but does also allow copy and paste of PS formatted strings as posted here on the forum. The program does not care about line breaks and blanks, so rip any puzzle from this forum and paste it into the program.

It is not a solver. You need to solve the puzzle, the program just helps you with a nice set of tools.

When finished, you can copy the solution into a 81 digit string on the clipboard. The Daily Killer Challenge at you-know-who requires you to post the answer in this format.

Please have a go at it and tell me what you like or dislike.

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Ruud » Wed Apr 26, 2006 1:14 am

Hi, an update of Sum-o-Cue is available.

I have worked a lot on the program lately, and it has grown remarkably, both visually and in functionality.

Because it is dedicated to Killer sudokus, I keep the program posted here.

First, here is a screenshot, to wet your appetite:

Image

The program can now give you hints when you're stuck on a killer. Many killer-specific techniques are implemented, like innies and outties, candidates locked in cages, etc.

If you want to communicate killer puzzles on a forum (like this), you can now copy the puzzle in this format and include it in your post:
Code: Select all
.--.--------.--.-----.-----.
|11|9       |18|10   |16   |
|  |-----.--'  |-----+-----:
|  |18   |     |7    |9    |
|  |  .--+-----+--.--+-----:
|  |  |11|12   |11|11|11   |
:--'--:  |-----:  |  |-----:
|13   |  |7    |  |  |12   |
:-----+--+-----'--:  |-----:
|13   |14|8       |  |9    |
:-----:  |--.-----+--+-----:
|6    |  |8 |15   |16|8    |
:-----:  |  |-----:  |--.--:
|11   |  |  |6    |  |13|13|
:-----+--'--+-----+--'  |  |
|10   |15   |17   |     |  |
:-----+-----:  .--'-----:  |
|7    |15   |  |15      |  |
'-----'-----'--'--------'--'

Enjoy the program,

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby udosuk » Wed Apr 26, 2006 7:45 am

Haven't tried your program yet, but I like your very nice representation of killer grids! However, I'm puzzled about the use of dots, colons & apostrophes for some T-junctions (but not all)... Why not use plus signs for all, like the following?

Code: Select all
+--+--------+--+-----+-----+
|11|9       |18|10   |16   |
|  +-----+--+  +-----+-----+
|  |18   |     |7    |9    |
|  |  +--+-----+--+--+-----+
|  |  |11|12   |11|11|11   |
+--+--+  +-----+  |  +-----+
|13   |  |7    |  |  |12   |
+-----+--+-----+--+  +-----+
|13   |14|8       |  |9    |
+-----+  +--+-----+--+-----+
|6    |  |8 |15   |16|8    |
+-----+  |  +-----+  +--+--+
|11   |  |  |6    |  |13|13|
+-----+--+--+-----+--+  |  |
|10   |15   |17   |     |  |
+-----+-----+  +--+-----+  |
|7    |15   |  |15      |  |
+-----+-----+--+--------+--+
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby Ruud » Tue May 02, 2006 7:12 pm

udosuk wrote:Why not use plus signs for all

I tried to avoid lines sticking out at the junctions. Using + signs at all junctions is something that I could offer as an alternative.

A new version is online, by the way. It is probably the first program that can solve Jigsaw Killers.

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Ruud » Wed May 10, 2006 2:24 am

Thanks for all the positive responses, in this thread and others.

I have done a lot of feature requests in SumoCue. Undo-Redo, new solving techniques, backtracking solver (DLX for Killer, yes it is possible), many more keyboard shortcuts, faster drawing of cages.

Click my Triple-W button to find the program.

cheers, Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Ruud » Thu May 11, 2006 8:35 pm

Thanks for all the suggestions for improvement, especially Pyrrhon. Your Jigsaw Killer is now a light snack for the program:)

Version 1.1.0 is on-line.

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Pyrrhon » Fri May 12, 2006 4:04 am

Thank you. Fast work. With the thicker lines it is easier to spot outies and innies. The old one is now solved. But you take only 2 outies in account. Let's take a little change.

Image

There is only the new cage 22(4) in the upper middle. Now the killer isn't solved. The solution would be to consider the 3 outies of the nonet around r1c9. The sum must be 22.. Therefore R2C6 must be 9 ...

In the moment I've no example to test how much innies the program considers, how it works with innies which are not buddies (if you use at least two houses for the innie technique then they must not to be buddies), whether you use row-nonet or column-nonet combinations in you innie and outie techniques and whether you use my innies with overlapping account.

For the last one I remember that in the situation

Image

you can conclude

R5C5 + R1C5 + R2C5 = (2x45)-(20+9+21+24) = 16.

We use column 5 and row 5.
R5C5 is the cut and R1C5, R2C5 are the innies.

Here we have the technique with a row and a column, but it also works with a row and a nonet or a column and a nonet.

(Of course here we could also use a 3 innies technique in row 5 (R5C3+R5C4+R5C4 = 45 - (21+9) = 15
and a cage split (not implemented in SumoCue I guess) becomes to be possible R3C5+R4C5 = 20 - 15 = 5. Using this we would also get R5C5 + R1C5 + R2C5 = 45-(5+24) = 16.)

If you have no innies this techniques collapse to normal overlapping.

Pyrrhon
Pyrrhon
 
Posts: 240
Joined: 26 April 2006

Postby Pyrrhon » Fri May 12, 2006 9:18 am

The program seems not to be stable. For example, if I take the sum sudoku-file sumo3.sum I get an array-failure.


Moreover let us take a little view on the following sudoku. SudoCue can't solve it without a dance now.

Image

By the way: row 4 and column overlap and we can calculate that R4C5 + R4C1 + R1C5 = 90 - (16+6+6+12+32) = 18. R4C5 is the cut, R4C1 and R1C5 are the innies. But this information doesn't help to solve this sudoku.

But there are two outies of row 5 and 6 at R3C1 and R3C1. Using the sum of these outies would solve the puzzle. Also the outies of row 1 and nonet 6 could be used in the no-more-steps-situation.

Pyrrhon
Pyrrhon
 
Posts: 240
Joined: 26 April 2006

Postby Ruud » Fri May 12, 2006 11:28 am

This is as far as I get with your modified jigsaw killer:

Code: Select all
.-----------------------------------.-----------------------.-----------------------.-----------------------.
|(19)                               |(7)                    |(10)                   |(9)                    |
| 56789       56789       23456     | 123456      123456    | 246789      123468    | 12345678    12345678  |
:-----------------------------------+-----------------------+-----------------------+-----------------------:
|(7)                                |(22)                   |(30)                   |(28)                   |
| 124         124         124       | 356789      356789    | 56789       3568      | 56789       56789     |
:-----------.-----------------------'-----------.           |                       |                       |
|(17)       |(27)                               |           |                       |                       |
| 123456789 | 356789      356789      356789    | 123456789 | 123456789   1234568   | 456789      456789    |
|           |                                   |           |                       |-----------.-----------:
|           |                                   |           |                       |(18)       |(12)       |
| 123456789 | 124         356789      124       | 123456789 | 456789      1234568   | 123456789 | 345789    |
|           |-----------------------.-----------'-----------+-----------------------:           |           |
|           |(27)                   |(18)                   |(11)                   |           |           |
| 123456789 | 3456789     3456789   | 123456789   123456789 | 1235        1235      | 123456789 | 345789    |
|           |                       |           .-----------:                       |           |-----------:
|           |                       |           |(25)       |                       |           |(7)        |
| 123456789 | 3456789     3456789   | 123456789 | 123456789 | 1235        1235      | 123456789 | 123456    |
:-----------'-----------------------'-----------:           '-----------------------:           |           |
|(21)                                           |                                   |           |           |
| 123456789   123456789   123456789   123456789 | 123456789   123456789   1234568   | 123456789 | 123456    |
:-----------.-----------------------------------+-----------------------.-----------+-----------'-----------:
|(11)       |(19)                               |(14)                   |(22)       |(10)                   |
| 23456789  | 123456789   123456789   1234568   | 1234568     1234568   | 79        | 12346789    12346789  |
|           |-----------------------.           |                       |           '-----------------------:
|           |(14)                   |           |                       |                                   |
| 23456789  | 5689        5689      | 123456789 | 12345678    12345678  | 79          1245        1245      |
'-----------'-----------------------'-----------'-----------------------'-----------------------------------'

The program has made eliminations in the 3 outies of the right-upper nonet, but I cannot see why R2C6 must be 9. The configurations for these 3 cells are {994}, {985} and {976}.

The puzzle does have a unique solution, but it takes a long dance to find it.

Your sumo3.sum puzzle is invalid. The index error was caused by a house with no candidates left. I modified the program to show a warning when an elimination leaves a house without candidates for that digit.

I will look into the overlapping houses as a solving technique soon.

cheers, Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Pyrrhon » Fri May 12, 2006 11:38 am

Where SumoCue ends we have:

R2C6={56789}
R3C9={4568}
R4C6={4568}

To get the sum of 22 you can restrict to:

R2C6={9}
R3C9={58}
R4C6={58}

In my last post I have added something. I hope you have seen it.

Pyrrhon
Pyrrhon
 
Posts: 240
Joined: 26 April 2006

Postby Pyrrhon » Mon May 22, 2006 9:26 am

In version 1.1.1 there seems to be a bug with the innie-outie-difference rule. Take
The Lock killer by Jean-Christophe Godart with or without diagonals. Go step by step through. You will get your program with an error message, but the puzzle has a unique solution.

Pyrrhon
Pyrrhon
 
Posts: 240
Joined: 26 April 2006


Return to Sudoku variants