Just One Cell

Post puzzles for others to solve here.

Re: Just One Cell

Postby JPF » Mon Aug 23, 2021 7:14 pm

Ok, I see.
This is the case where the closure has only one more cell than the initial puzzle.
For the creator of this type of puzzle, I guess it's about finding the maximum SER for the placement.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Just One Cell

Postby m_b_metcalf » Tue Aug 24, 2021 12:15 pm

yzfwsf wrote:This Sudoku variant cannot use UR or any technology that relies on unique solutions to puzzles.

... such as the backdoor 6r2c6.

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby yzfwsf » Tue Aug 24, 2021 12:36 pm

m_b_metcalf wrote:... such as the backdoor 6r2c6.
Mike

I don’t quite understand what you want to explain, but the solution to this puzzle is r3c2=7.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Just One Cell

Postby m_b_metcalf » Tue Aug 24, 2021 2:36 pm

yzfwsf wrote:
m_b_metcalf wrote:... such as the backdoor 6r2c6.
Mike

I don’t quite understand what you want to explain, but the solution to this puzzle is r3c2=7.

I'm simply agreeing that you can't use solving techniques based on uniqueness. Backdoors rely on that, and I find two in this puzzle, the other being 8r3c9.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby yzfwsf » Tue Aug 24, 2021 3:16 pm

m_b_metcalf wrote:I'm simply agreeing that you can't use solving techniques based on uniqueness. Backdoors rely on that, and I find two in this puzzle, the other being 8r3c9.

For your research, I don't understand. I just wrote a puzzle generator according to the rules of this puzzle variant. This puzzle is randomly generated by the generator. Just find the only cell with a unique solution.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Just One Cell

Postby denis_berthier » Tue Aug 24, 2021 3:47 pm

m_b_metcalf wrote:Backdoors rely on that (uniqueness)

It depends on how you define a backdoor.
In my view, it's any candidate that, when added to the givens, allows to find a solution using only Singles.
As a result, in case of non-uniqueness, different backdoors can lead to different solutions. However, I'm not sure the notion of a backdoor is very useful in this case.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Just One Cell

Postby m_b_metcalf » Tue Aug 24, 2021 4:33 pm

denis_berthier wrote:It depends on how you define a backdoor.
In my view, it's any candidate that, when added to the givens, allows to find a solution using only Singles.
As a result, in case of non-uniqueness, different backdoors can lead to different solutions. However, I'm not sure the notion of a backdoor is very useful in this case.

On that strict definition only the second one I find is a true backdoor. But both lead to the same solution, DEFISE's number 161.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby m_b_metcalf » Tue Aug 24, 2021 5:06 pm

FWIW, and hoping I've correctly understood, here are a few more.

Regards,

Mike

Hidden Text: Show
Code: Select all
                                                                                  #c solns ind
....2...3.3....4....5....9....45....2..7.8..1....31....4....6....6....5.3...1...2 21   632   1
.....9..1....7..58..7...32....6......2...1..4....5..63..2...8...75..2...39..16... 24   667   2
...........37.56.....6.3.8..25...71...........34...29..4.8.1.7...64.95........... 23  1667   3
..64....8.4...6.7...2......2..7.5....5..1..3....8.3..9......9...1.9...6.3....71.4 24    38   4
..3.1.7...2.3.8.4.....7...8.4.....1.2.6...8.4.3.....7.3...8...9.5.1.6.8...2.3.4.. 27    31   5
.3.2.....8...4.7....9..3...4..8..3...9..7..5...6.....1.7.6..9......3..8......1..4 22    82   6
.8......9.......6...5..28......387.....1.6.....352......74..5...9......86......1. 21   809   7
......2...3..5......4..9......6..3...4..7..8...5..2..62..1..6......8..7......6..5 20    97   8
.....6..2..7..1.8..3..5.7.1....1..2...14..9...5......7..5.9...6.8.6.....2.6..74.. 25    48   9
.47...3....8.7....25.9.......46..2...6..9..1......5..83..2..1......8..5......1..3 23   284  10
.4.5.....2...6.3....7..9...3..4..2...5..1..6...8.....1.6.3..5......9..7......1..2 22    34  11
..61......3...58.........3.2..4...7.........5.4...8..6.5......4..73.........269.. 20   315  12
.....2..3.2..4..7...89.......3.....9.6..5..3.1.....4.......31...7..2..5.9..4....6 22    42  13
..4.....2.7..1..5.......4.......9.1...3.2.7...6.1.......2.....9.5..7..6.8.....3.. 20   669  14
..5...6.....3.4.......9...2.9.8.5.7...8...4...7.1.9.3.2...7...5...4.8.....6...7.. 23   105  15
..6..8..5....7..3....2.....2....6..8..3.4..7....8..6....7.5...934........5...42.. 22   122  16
...8..3...4.9.3.......7...8.6....45...1...7...57....693...1.......5.4.7...4..2... 23   143  17
..6...1.......3.7.8.3.2...4...1...9...7...3...6...4...7...5.2.8.8.2.......1...7.9 23    37  18
.9...2..7.....7.4...864......3....58..1...2..84....3......635...1.7....95..4...6. 25    20  19
.....2..1..2.7..8..1.6..4....5..79...3..5...6...3...5...34....9.4...9.6.2...8.5.. 25    27  20
.....34...1..2..8....8....6..32......2...4.......7..1.9.....7...3...1.2...4.....9 20   511  21
.2.3..........4..6..5...1..2..5.3..4.......9..3.7.9..1..6..........7...5.4.8.6.7. 22   147  22
.......84.....5..2...48.35...1..8.....2.9.7...3.7...69..5.2......6..7...24...1... 24   140  23
.....4..7....5..28..1...65....9......2...5..3....7..95..2...8...18..2...43..87... 24   135  24
..3..8....4.7.....2....35...5.....4.........53.6...8....2..96.....4....9....1..57 21  1684  25
..9...1...6...2.4.....7...8...9...8...8.6.3...5...4...2...1...6.4.2...3...7...5.. 22    95  26
....3...5...1...7......61...3.2..7....5.8...9.....4.6.2.6.9.....4...1.....7.....3 21   766  27
..7.4.5.8.........4..9.7..3..6...1..8...3...5..1...4..1..2.8..7.........9.5.7.8.6 24   255  28
.45...8...3.4.....2.6.....7.2.6....3.....95......8..1.3...1.........5.9...47....6 22    27  29
..4...8.......8.3.2...6...4...5...9...6.3.5...4...6...3...7...2.5.1.......1...9.8 22    70  30
.....7..3....5..61...13.29...46.3....32.8...4...2.......6....4..47...9..25..9...8 26    50  31
........3.3.....2...61.38....27.13...4.....6...16.29....42.87...5.....9.2.......6 25   289  32
.3.4..........2..7..6...9..2..1.7..6.......8..4.8.5..3..7..........5...1.5.9.3.4. 22    24  33
.4...3..8.......2...687......7....8...1......2....69.......57...5.6....93......4. 20  1579  34
.9..8..4...4...3.9.1.....6....3.....2...1...7.....5....4.....5.9.6...4.1.7..2..9. 22  1205  35
...2...3...7.1.6...1...5....4...7.........84..5...9....6...4.....2.8.3.....6...5. 20  1335  36
......6...7..1......5..8..4.....35...9..7..8...42....98..3.........6..1...2..5..6 21   159  37
.6..3..4...2...5.7.5.....9....8.....1...7...8.....4....9.....5.4.6...3.9.7..2..6. 22   106  38
..6.......5....8..2..1...7....4.....3.26......4..829...1..4...8..37...9.4...6.53. 24    17  39
...2..6...2..1..7...3..6..22..5..8...1..7..2...4..2..73..6..5...4..5..9...5..8..4 26    29  40
......6...1..5......3..4......9..1...4..6..7...5..1..36..2..8......7..1......3..5 20   106  41
..8...5...2...7.1...9.....8.....4.2.....9.....3.7.5...8.....6.9.5.3...7...4...1.. 21   188  42
...79...5..4..8.1..5....6..2......3.3...1...9.6.....5...7...2...1.8.2...4...3...1 23    88  43
.....53.....4....7..3.8..2..4..1......2....5.98..7......9.5..3....9....1.....24.. 21   757  44
...571.....3...4...8.....6......2..91.......36..8....5.9.....8...7...1.....324... 21   159  45
...62...8..2..8.9..4....1..2......4.3...7...9.5.....7...1...9...6.7.2...4...3...5 23    11  46
....3...4..5....6..4....8......857..2..6........7....3..68..5...2.....7.3....1..2 21   116  47
.3......1.......4...4..85......596.....3.4.....578......62..7...1......92......3. 21  1267  48
........2..6..498..2..9.61....9...5...7..2..6.3..81....48....3..598..4......4.... 25   335  49
.971.........4...3.....5..2..43.6..1.1.....5....4.17..5..9.....2...8.........764. 23    28  50
.3..1.4...4.3...89..6...1......3..6.6..5.9..8.5..8......7...2.142...1.5...5.7..4. 27    84  51
...........35..7...2..6..8..1.4.2.....4.7.5.....3...9..3..8..2...5..96..........9 21   118  52
...1.......2.4..5..9....6...7..9....8.....2.3.4..6.....6....9....5.3..4.1..2..... 20   230  53
..27......3...54.........2.2..8...1.........2.4...9..8.5......9..61.........943.. 20  2351  54
...1.......5.3.6...1...2.8..2..5..........9.7.3..6.....4...8.2...6.7.3.....4..... 20    75  55
..7.8.9...4...9.3.......5.7...4...2.4...1.3...8...3...1.8.9...3.7.2...5...5...7.. 24   119  56
..4.....6....32....7.1...8...3.....4.6..8..7.......2...5...7.9....46....8.....3.. 20    90  57
.....65...2..4..3...85....6.3.8.........3.........5.7.7....19...4..9..8...16....2 22    56  58
...48...2..5..7.6..4....7..2......9.3...1...8.5.....1...3...6...6.7.3...4...2...9 23   101  59
...73...2..2..5.1..4....8..2......3.3...1...6.5.....9...6...7...1.4.9...4...8...9 23    61  60
.....4..7....8.25...5....34....4.....3.6.79......3..48.4..7.1...16..5...2.7..6... 25   277  61
.3.5...1...6..27.....8....4.......9...7.3.5...4......22....8.....14..6...5...9.3. 22    36  62
.5..1.......6..3.......8.5..3..2.4..5..7.9..8..2.4..6..6.4.......1..3..9....8..7. 23    77  63
.....1..2..6.5..8..3.8.......7.....9.4..8..3.......5.......92...5..6..4.2..4..... 20  3083  64
.3.7..........2..4..6...9..2..3.7..6.......9..4.5.1..7..3..........8...5.5.6.4.8. 22   194  65
.185.........6...3.....1..2..52.8..1.9.....5....3.52..4..1.....9...4.........764. 23    91  66
.2.4...3.....3...2.....5...5...7.6...4.9.6.8...9.1...3...6.....2...9...4.5...8.1. 23   574  67
.5.6...7......3..9......5..2..9.7..1.6.....2.3..2.6..4..8......4..8....6.7...5.8. 23   831  68
........7.3.....5...54.81....63.74...1.....7...78.19....85.92...4.....6.2.......9 25    39  69
..6...3...3...9.7...5.....2.....2.9.....5.....4.7.6...2.....5.3.5.8...4...1...6.. 21   291  70
...7....9.4.....2...6..85..2..3..4.......9.....7.4...5..82..6...5.....3.3....7..1 22   520  71
..8...1...4.....36..6.2.4...5.6.3.7...........7.1.9.5...7.9.8..18.....43..4...7.. 25    85  72
..2..3..7....2..5....6..3....74....8.8.....6.2....87....1..7..9.9..8....6..5..4.. 23   273  73
..6.....9.3...1.6....5..7....12...8.....9.....7...85....5..7..4.8.3...1.6.....2.. 22    74  74
.....9..7.1..3.6....586..4...2.....3.36...51.......2...4..867....7.5..8.2..9..... 25    39  75
.....8..4....6..51..52..96...3....1..2...95......7...9..6.4.....316...4.24...7... 25    20  76
.8..7..5....6....3..7...6......5..3.3..9.1..2.4..8......5...3..8....7..1.1..2..4. 23    88  77
..23......4...67.........9.5..1...2.....2.....6...8..4.5......6..98...1......45.. 20   108  78
...1....3..3..74...4..8..5..1......2..2...7..5......3..7..9..4...92..6..4....8..1 23   206  79
......7...2...3.8...5.4...6...8...1...6.5.9...3...2.......9.5...4.6...3...7.....4 21    27  80
.....2..1..2.1..4..1.3..8....4..86...2..7...5...5...9...56....4.3...9.7.2...8.3.. 25     6  81
.....6..7..2.9..4..1.3.......9.....6.5..4..9.......8.......13...9..7..5.6..8..... 20   890  82
..7.1..8..4...9.2....7..4....49...7.2.......5.5...29....8..6..336.5...1.....3.8.. 25    63  83
...3....6.4.....8...5..72..2....58......7......61....3..72..5...1.....9.3....8..4 22    50  84
...........57.64....34.268..26...13...........37...54..415.726...26.38........... 27    84  85
.....2..6....5.43...6....51....8.....3.7.15......4..79.4..3.6...51..8...2.3..4... 25   119  86
.............3...1.5.9.7.6...9...8.....6.2.....2...4...9.2.3.7.5...4...8......... 19 14521  87
....6..2..1...3..6..54..9....47...1.........8.3...85....6..53..2..3...7..4..8.... 23    10  88
...2...3...4.7.8...2...4....3...5.........94..4...6....5...9.....6.8.7.....3...8. 20  1262  89
..31....4.6..3.7....8..4.3..5.9..4......6..7......3..29.....5.7.....8.4...2.....1 23    56  90
..4...1...6...7...8...5...3...1.3.7...3...8...5.2.4...7...2...8...3...4...2...9.6 23    75  91
..6..2..3....7..4....9..5....78....2.3.....1.5.....3....2..6..1.8..5....1..3..4.. 22    25  92
.3.8...4...6..57.....2....9.......6...5.9.4...4......22....8.....74..5...5...1.3. 22    49  93
..5...8...3.....72..7.9.3...4.5.7.6...........5.6.2.4...8.6.1..26.....87..3...6.. 25    36  94
.2.....7...6...3.4.3.1.4.8...2.1.9.....8.6.....7.9.8...4.5.2.3.2.8...4.5.5.....9. 27    35  95
..6...8...4.....9.2....37.1...2.89......4......76.1...3.27....6.5.....3...8...1.9 24    29  96
...2..8......3..7...5..4..12.....7...1..7..9...6.....43..8..6...4..2......7..5..9 22   107  97
..4..1..8....2..6....3..4....7.3...5.6.9...1.8.....7....8..2..7.5..4....7..5..1.. 23   722  98
..4..7..9.3.....6.....8.3.....7.8..1..5...7..2..5.9.....6.9...2.2.....4.3..1..8.. 23   190  99
.7..1..4...4...3.7.8.....9....5.....2...7...8.....3....4.....5.7.1...4.9.9..2..6. 22   743 100
.3.......2..4..3....4.3..9..4..5..1...27..6.......8..2.5..8..3...65..7.......1..8 23    89 101
.3...5....4.........5.92......7..9.8..3...4..2.6..1......81.7.........93...2...5. 21    39 102
..5.....2.2...3.7....8..9....64...1.....8.....3...98....7..5..4.4.6...3.2.....6.. 22   104 103
..7.......3....8..2..6...9....4.....3.82......5..187...6..4...9..37...4.4...9.61. 24    23 104
.412.........4...5.....8..4..53.4..1.3.....5....6.59..2..7.....3...6.........178. 23   136 105
...........58.73.....5.2.4..26...43...........34...91..4.3.9.2...72.68........... 23   735 106
Last edited by m_b_metcalf on Tue Aug 24, 2021 6:35 pm, edited 1 time in total.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby denis_berthier » Tue Aug 24, 2021 6:35 pm

m_b_metcalf wrote:
denis_berthier wrote:It depends on how you define a backdoor.
In my view, it's any candidate that, when added to the givens, allows to find a solution using only Singles.
As a result, in case of non-uniqueness, different backdoors can lead to different solutions. However, I'm not sure the notion of a backdoor is very useful in this case.

On that strict definition only the second one I find is a true backdoor. But both lead to the same solution, DEFISE's number 161.

What is your looser definition?
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Just One Cell

Postby m_b_metcalf » Tue Aug 24, 2021 6:38 pm

denis_berthier wrote:What is your looser definition?

My program can allow other simple techniques apart from singles, but I can switch that off. M.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby denis_berthier » Wed Aug 25, 2021 1:15 am

m_b_metcalf wrote:
denis_berthier wrote:What is your looser definition?

My program can allow other simple techniques apart from singles, but I can switch that off. M.

I see. I can do this also. But then I qualify them as W1-backdoors, S-Backdoors....
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Just One Cell

Postby m_b_metcalf » Wed Aug 25, 2021 12:36 pm

It turns out that these puzzles can be generated in great profusion (see my previous post with 106 examples). Here are two more that
are symmetric and have very many solutions (but, of course, with one empty cell having the same value in all of them - the object of the search).
I have another 1000 symmetric puzzles on file.

Regards,

Mike

Code: Select all
 . . . . . 9 . . 1
 . 3 . . . . . 2 .
 . . 5 6 8 . . . .
 . . 4 . . 8 7 . .
 . . 6 . . . . . .
 1 . . 4 . . . . .
 . . . 7 . . 5 . .
 . 4 . . . . . 6 .
 2 . . . . . . . 8   Diagonal symmetry, no. of givens = 19.

.....9..1.3.....2...568......4..87....6......1..4........7..5...4.....6.2.......8

Code: Select all
 . . . . . . . 2 .
 . . . . . 9 . 7 3
 . . 8 . 5 . . . .
 . . . 4 . . . 6 .
 . . 5 . . . 4 . .
 . 1 . . . 2 . . .
 . . . . 8 . 3 . .
 6 2 . 1 . . . . .
 . 3 . . . . . . . Rotational symmetry, no. of givens = 18.

.......2......9.73..8.5.......4...6...5...4...1...2.......8.3..62.1......3.......
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby yzfwsf » Thu Aug 26, 2021 3:50 am

Hi Mike!
How did you make these puzzles. I use the following generation method, first find a suitable pear puzzle, and then use the traditional top-down method.

Regards,

YZF
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Just One Cell

Postby m_b_metcalf » Thu Aug 26, 2021 7:34 am

yzfwsf wrote: How did you make these puzzles. I use the following generation method, first find a suitable pear puzzle, and then use the traditional top-down method.

Step 1: Generate, or copy, a file of puzzles guaranteed to be minimal (hint: Patterns Game).

Step 2: From such a puzzle remove one clue - the puzzle now has multiple solutions.

Step 3: Find all those solutions whilst keeping a running tally of their common values.

Step 4: If the number of common values less the number of givens is 1, save the modified puzzle to a file.

Repeat from 2.

HTH

Mike

P.S. I'm not sure what you mean by 'suitable pear puzzle'.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Re: Just One Cell

Postby yzfwsf » Thu Aug 26, 2021 8:16 am

I mean to find the pearl puzzle of the difficulty specified by the user.
The way I check whether the puzzle is just one cell is also different from yours. I traverse the pencil mark of each cell to blast the pruning, so I don’t need to get all the solutions.

YZF
yzfwsf
 
Posts: 905
Joined: 16 April 2019

PreviousNext

Return to Puzzles