June 6, 2016

Post puzzles for others to solve here.

June 6, 2016

Postby ArkieTech » Sun Jun 05, 2016 11:47 pm

Code: Select all
 *-----------*
 |..4|9..|...|
 |76.|.2.|5.9|
 |...|...|8..|
 |---+---+---|
 |..6|24.|9..|
 |..1|...|..2|
 |.95|.6.|.4.|
 |---+---+---|
 |...|..4|72.|
 |.8.|...|4..|
 |...|..3|.68|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: June 6, 2016

Postby pjb » Mon Jun 06, 2016 12:10 am

Code: Select all
 135     135     4      | 9      8      57     | 2      17     6     
 7       6       8      | 4      2      1      | 5      3      9     
 159     125     29     |*357   *357    6      | 8      17     4     
------------------------+----------------------+---------------------
 38      37      6      | 2      4      57     | 9      58     1     
 48      47      1      |*357   *357    9      | 6      58     2     
 2       9       5      | 1      6      8      | 3      4      7     
------------------------+----------------------+---------------------
 6       15      39     | 8      19     4      | 7      2      35     
 15      8       37     | 6      17     2      | 4      9      35     
 49      24      279    |*57    *9-57   3      | 1      6      8     

BUG-lite (type 1) at r359c45 => -57 r9c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: June 6, 2016

Postby SteveG48 » Mon Jun 06, 2016 2:06 am

Yarg. But here it is.

Code: Select all
 *--------------------------------------------------*
 | 135 i135  4    | 9    8    7-5  | 2    17   6    |
 | 7    6    8    | 4    2    1    | 5    3    9    |
 | 159  125  29   | 357  357  6    | 8    17   4    |
 *----------------+----------------+----------------|
 | 38  b37   6    | 2    4   a57   | 9    58   1    |
 | 48  c47   1    | 357  357  9    | 6    58   2    |
 | 2    9    5    | 1    6    8    | 3    4    7    |
 *----------------+----------------+----------------|
 | 6   h15   39   | 8    19   4    | 7    2    35   |
 |g15   8    37   | 6   f17   2    | 4    9    35   |
 |e49  d24   279  |f57  f579  3    | 1    6    8    |
 *--------------------------------------------------*

(5=7)r4c6 - r4c2 = (7-4)r5c2 = r9c2 - (4=9)r9c1 - (9=157)b8p578 - 1r8c1 = r7c2 - (1|3=5)r1c2 => -5 r1c6 ; stte
                 = 3r4c2 --------------------------------------------------------/

Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: June 6, 2016

Postby SteveG48 » Mon Jun 06, 2016 2:15 am

pjb wrote:
Code: Select all
 135     135     4      | 9      8      57     | 2      17     6     
 7       6       8      | 4      2      1      | 5      3      9     
 159     125     29     |*357   *357    6      | 8      17     4     
------------------------+----------------------+---------------------
 38      37      6      | 2      4      57     | 9      58     1     
 48      47      1      |*357   *357    9      | 6      58     2     
 2       9       5      | 1      6      8      | 3      4      7     
------------------------+----------------------+---------------------
 6       15      39     | 8      19     4      | 7      2      35     
 15      8       37     | 6      17     2      | 4      9      35     
 49      24      279    |*57    *9-57   3      | 1      6      8     

BUG-lite (type 1) at r359c45 => -57 r9c5; stte

Phil


Phil, I don't see your BUG-lite. It seems to me that one of r3c45 and one of r5c45 has to be a 3, so there's no possibility of a 5/7 UR. But if r9c5 is not a 9, then one of r9c45 has to be a 5 and one of r9c45 has to be a 7, eliminating 3/5 and 3/7 URs as well. So it's OK for r9c5 to be a 5 or 7. Am I missing something?
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: June 6, 2016

Postby omerosler » Mon Jun 06, 2016 3:16 am

I used the same method, the explanation is because for an assignment of R14C6 there are two solutions that can be interleaved:
Code: Select all
.....Y...
.........
...X3...
.....X...
...3Y...
.........
.........
...YX....


Code: Select all
.....Y...
.........
...3X...
.....X...
...Y3...
.........
.........
...XY....

EDIT:
And one assignment must bes true => two solutions
omerosler
 
Posts: 16
Joined: 31 May 2016

Re: June 6, 2016

Postby pjb » Mon Jun 06, 2016 3:38 am

Code: Select all
35    53
73    37
57    75

Steve, these two arrangements are possible. There are thus 2 solutions if r9c5 <> 9.
Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: June 6, 2016

Postby Leren » Mon Jun 06, 2016 7:16 am

Code: Select all
35   53  | 73   37
73   37  | 35   53
57   75  | 57   75

It seems to me that four arrangements are possible. For the first two arrangements r1c6 = 7 and r4c6 = 5. For the second two arrangements r1c6 = 5 and r4c6 = 7.

Arrangements 1 and 2 are thus impermeable within the rows, columns and boxes in which they are situated, as are Arrangements 3 and 4.

This means that the solution status of Arrangements 1 and 2 are the same : they are both either part of a valid solution or part of a non-solution. Similarly for Arrangements 3 and 4.

Thus, if r9c5 <> 9 the number of valid solutions of the puzzle could be 0, 2 or 4. If r9c5 = 9 the number of valid solutions of the puzzle could be 1, 3 or 5.

Since we were not warned that the puzzle may have multiple solutions then we are entitled to assume that the number of solutions is 1. The only way this can happen is if r9c5 = 9 and none of the four arrangements is part of a valid solution.

Leren
Last edited by Leren on Mon Jun 06, 2016 7:27 am, edited 2 times in total.
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: June 6, 2016

Postby JC Van Hay » Mon Jun 06, 2016 7:24 am

Code: Select all
+-------------------+----------------+-------------+
| 135  (135)   4    | 9    8    (57) | 2  17  6    |
| 7    6       8    | 4    2    1    | 5  3   9    |
| 159  (125)   (29) | 357  357  6    | 8  17  4    |
+-------------------+----------------+-------------+
| 38   (37)    6    | 2    4    5-7  | 9  58  1    |
| 48   47      1    | 357  357  9    | 6  58  2    |
| 2    9       5    | 1    6    8    | 3  4   7    |
+-------------------+----------------+-------------+
| 6    (15)    (39) | 8    19   4    | 7  2   (35) |
| 15   8       37   | 6    17   2    | 4  9   35   |
| 49   24      279  | 57   579  3    | 1  6   8    |
+-------------------+----------------+-------------+
[(7=3)r4c2-3r1c2==2r3c2-2r3c2==3r7c3-3r7c9==1r7c2-1r1c2=*XYWing(357)r1c16.r4c2]-(7=5)r4c6; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: June 6, 2016

Postby Sudtyro2 » Mon Jun 06, 2016 10:43 am

Code: Select all
 abc .   .   | abc  .  .  |  ab9 .   .
 abc .   .   | abc  .  .  |  ab  .   .
 .   .   .   | .    .  .  |  .   .   .

Without the 9, wouldn't this be a basic MUG pattern (including morphs)?
Hence, the 9 must be true.

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 6, 2016

Postby Leren » Mon Jun 06, 2016 12:15 pm

Sudtyro2 wrote:
Code: Select all
 abc .   .   | abc  .  .  |  ab9 .   .
 abc .   .   | abc  .  .  |  ab  .   .
 .   .   .   | .    .  .  |  .   .   .

Without the 9, wouldn't this be a basic MUG pattern (including morphs)?
Hence, the 9 must be true.

SteveC

At the risk of being labelled a pain in the neck I'd say 1. Yes this would be a MUG pattern and 2. The 9 must be True IF THE PUZZLE HAS EXACTLY ONE SOLUTION !

My understanding is that MUGs are an extension of the BUG principle, for which I have found an old proof here.

The proof states at the end (my underlining) :

In summary, we have shown that a BUG either has no solution, or has at least two solutions if it has any solution. We can conclude that no BUG has a unique solution.

If the MUG had more than one solution, would the 9 have to be True ? Not necessarily as far as I can see.

The reason that we can say that the 9 must be True in this puzzle is that a convention is being followed : if a puzzle maker doesn't say anything about the uniqueness of the puzzle, we are entitled to assume that the puzzle has a unique solution, so the MUG state must have no solutions for the puzzle in question.

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: June 6, 2016

Postby SteveG48 » Mon Jun 06, 2016 1:11 pm

pjb wrote:
Code: Select all
35    53
73    37
57    75

Steve, these two arrangements are possible. There are thus 2 solutions if r9c5 <> 9.
Phil


Thanks, Phil. Senior moment. I see it now.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: June 6, 2016

Postby bat999 » Mon Jun 06, 2016 5:09 pm

Code: Select all
.--------------------.-----------------.------------.
|  15-3  d135b   4   | 9     8     57B | 2  17   6  |
|  7      6      8   | 4     2     1   | 5  3    9  |
| a159   d125a   29  | 357A  357A  6   | 8  17   4  |
:--------------------+-----------------+------------:
|  38D    7-3    6   | 2     4     57C | 9  58D  1  |
|  48     47     1   | 357   357   9   | 6  58   2  |
|  2      9      5   | 1     6     8   | 3  4    7  |
:--------------------+-----------------+------------:
|  6     d15b   c39  | 8     19    4   | 7  2    35 |
| b15     8     b37  | 6    b17    2   | 4  9    35 |
| c49    c24    279  | 57    579   3   | 1  6    8  |
'-------------------'-----------------'------------'
(5)r3c1 - (5=3)r8c135 - (3=2)r7c3,r9c12 - (2=3)r137c2 - (3)r1c1,r4c2
(5)r3c2 - (5=3)r17c2 - (3)r1c1,r4c2
(5)r3c45 - r1c6 = r4c6 - (5=3)r4c18 - (3)r1c1,r4c2
=> -3 r1c1,r4c2; stte
8-)
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: June 6, 2016

Postby Sudtyro2 » Mon Jun 06, 2016 9:01 pm

Leren wrote:
Sudtyro2 wrote:
Code: Select all
 abc .   .   | abc  .  .  |  ab9 .   .
 abc .   .   | abc  .  .  |  ab  .   .
 .   .   .   | .    .  .  |  .   .   .
Without the 9, wouldn't this be a basic MUG pattern (including morphs)?
Hence, the 9 must be true.
SteveC

At the risk of being labelled a pain in the neck ...
The reason that we can say that the 9 must be True in this puzzle is that a convention is being followed : if a puzzle maker doesn't say anything about the uniqueness of the puzzle, we are entitled to assume that the puzzle has a unique solution, so the MUG state must have no solutions for the puzzle in question.
Leren
No danger of being a PITN...please continue to keep us honest!
FWIW, to those interested, here's a link to a nice MUG discussion:
http://forum.enjoysudoku.com/forming-mugs-from-bug-lite-composites-t3210.html

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 6, 2016

Postby Leren » Tue Jun 07, 2016 3:33 am

SteveG48 wrote:
pjb wrote:
Code: Select all
35    53
73    37
57    75

Steve, these two arrangements are possible. There are thus 2 solutions if r9c5 <> 9.
Phil


Thanks, Phil. Senior moment. I see it now.

I can't resist having one more PNIN moment. Hi Steve, as you can apparently see that there are 2 solutions if r9c5 <> 9, perhaps you can show them to us.

I gave it a bit of a go myself. I manually removed 9 from r9c5 and forced the puzzle into the first of the UR cell arrangements.

This was my solver's "solution".

Code: Select all
*--------------------------*
| 1 3 4  | 9 8 7  | 2 0 6  |
| 7 6 8  | 4 2 1  | 5 3 9  |
| 9 0 2  | 3 5 6  | 8 7 4  |
|--------+--------+--------|
| 3 7 6  | 2 4 5  | 9 8 1  |
| 8 4 1  | 7 3 9  | 6 5 2  |
| 2 9 5  | 1 6 8  | 3 4 7  |
|--------+--------+--------|
| 6 1 3  | 8 9 4  | 7 2 5  |
| 5 8 7  | 6 1 2  | 4 9 3  |
| 4 2 9  | 5 7 3  | 1 6 8  |
*--------------------------*

You'll note that r1c8 and r3c2 have 0 in them - that means there are no candidates left to put into these cells. Maybe you'll have better luck.

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: June 6, 2016

Postby SteveG48 » Tue Jun 07, 2016 1:24 pm

Leren wrote:
SteveG48 wrote:
pjb wrote:
Code: Select all
35    53
73    37
57    75

Steve, these two arrangements are possible. There are thus 2 solutions if r9c5 <> 9.
Phil


Thanks, Phil. Senior moment. I see it now.

I can't resist having one more PNIN moment. Hi Steve, as you can apparently see that there are 2 solutions if r9c5 <> 9, perhaps you can show them to us.

I gave it a bit of a go myself. I manually removed 9 from r9c5 and forced the puzzle into the first of the UR cell arrangements.

This was my solver's "solution".

Code: Select all
*--------------------------*
| 1 3 4  | 9 8 7  | 2 0 6  |
| 7 6 8  | 4 2 1  | 5 3 9  |
| 9 0 2  | 3 5 6  | 8 7 4  |
|--------+--------+--------|
| 3 7 6  | 2 4 5  | 9 8 1  |
| 8 4 1  | 7 3 9  | 6 5 2  |
| 2 9 5  | 1 6 8  | 3 4 7  |
|--------+--------+--------|
| 6 1 3  | 8 9 4  | 7 2 5  |
| 5 8 7  | 6 1 2  | 4 9 3  |
| 4 2 9  | 5 7 3  | 1 6 8  |
*--------------------------*

You'll note that r1c8 and r3c2 have 0 in them - that means there are no candidates left to put into these cells. Maybe you'll have better luck.

Leren


Not quite. I don't see that there are 2 solutions if r9c5 <> 9. I see that if there is at least one solution with r9c5 <> 9, then there must be at least 2 solutions. A subtle distinction, but crucial. As you've shown, there are no solutions if r9c5 <> 9. This is what we expect, since we've assumed from the beginning that it's a proper puzzle with a unique solution. That's the basis of Phil's elimination, and all eliminations involving uniqueness arguments.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Next

Return to Puzzles