June 30, 2019

Post puzzles for others to solve here.

June 30, 2019

Postby ArkieTech » Sun Jun 30, 2019 10:06 am

Code: Select all
 *-----------*
 |.86|.9.|2..|
 |9..|.51|...|
 |.5.|64.|...|
 |---+---+---|
 |...|...|19.|
 |.2.|938|.7.|
 |.94|...|...|
 |---+---+---|
 |...|.84|.3.|
 |...|31.|..5|
 |..8|.7.|41.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: June 30, 2019

Postby Leren » Sun Jun 30, 2019 10:36 am

Code: Select all
*---------------------------------------------*
| 4      8   6   | 7   9   3  | 2   5   1     |
| 9      37  2   | 8   5   1  | 367 4   367   |
| 137    5   137 | 6   4   2  | 379 8   379   |
|----------------+------------+---------------|
| 35678 b367 357 | 4  a26  57 | 1   9   368-2 |
| 156    2   15  | 9   3   8  | 56  7   4     |
| 3578   9   4   | 1   26  57 | 35  26  38    |
|----------------+------------+---------------|
| 256    1   59  | 25  8   4  | 679 3   2679  |
| 267    4   79  | 3   1   69 | 8   26  5     |
| 2356  c36  8   | 25  7  d69 | 4   1  d269   |
*---------------------------------------------*

(2=6) r4c5 - r4c2 = r9c2 = (6=2) r9c69 => - 2 r4c9; stte

Leren
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: June 30, 2019

Postby Ngisa » Sun Jun 30, 2019 2:04 pm

Code: Select all
+-----------------------+------------------+---------------------+
| 4         8       6   | 7      9      3  | 2       5      1    |
| 9         37      2   | 8      5      1  | 367     4      367  |
| 137       5       137 | 6      4      2  | 379     8      379  |
+-----------------------+------------------+---------------------+
| 35678     367     357 | 4      26     57 | 1       9      2368 |
| 156       2       15  | 9      3      8  | 56      7      4    |
| 35678     9       4   | 1      26     57 | 356     26     2368 |
+-----------------------+------------------+---------------------+
|d256       1      d59  |d25     8      4  | 67-9    3      267-9|
| 267       4       79  | 3      1      69 | 8       26     5    |
|c2356     c36      8   | 25     7     b69 | 4       1     a269  |
+-----------------------+------------------+---------------------+

(9)r9c9 = (9-6)r9c6 = r9c12 - (6=259)r7c134 => - 9r7c79; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: June 30, 2019

Postby Sudtyro2 » Sun Jun 30, 2019 8:33 pm

Ngisa wrote:
(9)r9c9 = (9-6)r9c6 = r9c12 - (6=259)r7c134 => - 9r7c79; stte

Hi Clement,
The strong link (shown in red above) is not guaranteed because there's yet another 6-digit at r9c9 having undetermined parity.

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: June 30, 2019

Postby SpAce » Sun Jun 30, 2019 10:30 pm

Sudtyro2 wrote:
Ngisa wrote:
(9)r9c9 = (9-6)r9c6 = r9c12 - (6=259)r7c134 => - 9r7c79; stte

The strong link (shown in red above) is not guaranteed because there's yet another 6-digit at r9c9 having undetermined parity.

Yep, it seems to require a bit longer chain:

(9)r9c9 = (9-6)r9c6 = r8c6 - r8c8 = r6c8 - r5c7 = r5c1 - (6=259)r7c143 => -9 r7c79; stte

I'm already slipping, but since I couldn't yet leave due to an unfinished discussion, and already used this puzzle as an example in it, I might as well post my solution too. I'm surprised it's still available anyway.

Code: Select all
.-------------------.--------------.--------------------.
|  4       8    6   |  7    9   3  | 2      5     1     |
|  9       37   2   |  8    5   1  | 367    4     367   |
|  137     5    137 |  6    4   2  | 379    8     379   |
:-------------------+--------------+--------------------:
|  35678   367  357 |  4    26  57 | 1      9     2368  |
|  156     2    15  |  9    3   8  | 56     7     4     |
|  3578    9    4   |  1    26  57 | 35     26    38    |
:-------------------+--------------+--------------------:
| b25(+6)  1   b9#5 | b25+  8   4  | 79-6   3     279-6 |
| a7#2-6   4    79  |  3    1   69 | 8     a2[6]  5     |
|  25+36   36   8   |  25+  7   69 | 4      1     269   |
'-------------------'--------------'--------------------'

UR(25)r79c14 using #externals (b7)

(6,2)r8c81 == (526)r7c341 => -6 r7c79,r8c1; stte

or:

(6,2)r8c81 == (597)r7c379 => -6 r7c79; stte

variants with internals, some of them quite funny: Show
UR(25)r79c14 using +internals

(6)r7c1 == (369,2)r9c1269 - (2=6)r8c8 => -6 r7c79,r8c1

(6)r7c1 == (3|6-52)r9c14 = (26)b9p95 => -6 r7c79,r8c1

(6)r7c1 == (3|6-5|2)r9c1 = (52)r9c49 - (2=6)r8c8 => -6 r7c79,r8c1

(6)r7c1 == (3|6-5|2)r9c1 = (52-9)r9c49 = (97)r7c79 => -6 r7c79
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: June 30, 2019

Postby Ngisa » Mon Jul 01, 2019 11:07 am

Sudtyro2 wrote:
Ngisa wrote:
(9)r9c9 = (9-6)r9c6 = r9c12 - (6=259)r7c134 => - 9r7c79; stte

Hi Clement,
The strong link (shown in red above) is not guaranteed because there's yet another 6-digit at r9c9 having undetermined parity.

SteveC
Sure, I over looked it.
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: June 30, 2019

Postby rjamil » Mon Jul 01, 2019 1:07 pm

Code: Select all
.86.9.2..9...51....5.64..........19..2.938.7..94..........84.3....31...5..8.7.41.
 +-----------------+--------------+-------------------+
 | 4      8    6   | 7   9   3    | 2    5     1      |
 | 9      37   2   | 8   5   1    | 367  4     367    |
 | 137    5    137 | 6   4   2    | 379  8     379    |
 +-----------------+--------------+-------------------+
 | 35678  367  357 | 4   26  57   | 1    9     2368   |
 | 156    2    15  | 9   3   8    | 56   7     4      |
 | 3578   9    4   | 1   26  57   | 35   26    38     |
 +-----------------+--------------+-------------------+
 | 256    1    59  | 25  8   4    | 679  3     2679   |
 | 267    4    79  | 3   1   (6)9 | 8    (26)  5      |
 | 235-6  3-6  8   | 25  7   (69) | 4    1     (269)  |
 +-----------------+--------------+-------------------+

XYZ-Wing Hybrid: 269 @ r9c9 r9c6 r8c8 Box 8 Hybrid 6 @ r8c6 => -6 @ r9c1 r9c2; stte

R. Jamil
rjamil
 
Posts: 774
Joined: 15 October 2014
Location: Karachi, Pakistan


Return to Puzzles