- Code: Select all
*-----------*
|...|...|1..|
|83.|5..|4.7|
|.91|.2.|...|
|---+---+---|
|7..|1..|...|
|6.5|...|834|
|...|..6|..9|
|---+---+---|
|...|.7.|.4.|
|9.3|..5|.68|
|..8|...|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|...|1..|
|83.|5..|4.7|
|.91|.2.|...|
|---+---+---|
|7..|1..|...|
|6.5|...|834|
|...|..6|..9|
|---+---+---|
|...|.7.|.4.|
|9.3|..5|.68|
|..8|...|...|
*-----------*
*--------------------------------------------------*
|f4-5 6 7 |d39 8 e49 | 1 a25 a235 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 | 356 8 356 |
*----------------+----------------+----------------|
| 7 8 9 | 1 4 3 | 56 25 256 |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
*----------------+----------------+----------------|
|b12 5 6 |c29 7 8 | 39 4 b13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 15 |
*--------------------------------------------------*
*--------------------------------------------------------------*
| 45 6 7 |e3-9 8 49 | 1 25 d235 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 |c356 8 356 |
|--------------------+--------------------+--------------------|
| 7 8 9 | 1 4 3 | 56 25 256 |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
|--------------------+--------------------+--------------------|
| 12 5 6 |a29 7 8 |b39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 15 |
*--------------------------------------------------------------*
+-----------------------------------------------------+
| 45 6 7 | 39 8 49 | 1 *25 *25+3 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 | #56+3 8 #56+3 |
|-----------------+-----------------+-----------------|
| 7 8 9 | 1 4 3 | #56 *25 *256# |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
|-----------------+-----------------+-----------------|
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 15 |
+-----------------------------------------------------+
# 27 eliminations remain
3r3c9 =UR_Type_6= 6r3c9,r4c7 - 6r4c9 =UR_Type_1= 3r1c9 => -3 r3c7,r7c9
45 6 7 | 39 8 49 | 1 #25 #235
8 3 2 | 5 6 1 | 4 9 7
45 9 1 | 37 2 47 | 56-3 8 356
---------------------+----------------------+---------------------
7 8 9 | 1 4 3 |c56 #25 #256
6 1 5 | 27 9 27 | 8 3 4
3 2 4 | 8 5 6 | 7 1 9
---------------------+----------------------+---------------------
12 5 6 | 29 7 8 |a39 4 1-3
9 7 3 | 4 1 5 | 2 6 8
12 4 8 | 6 3 29 |b59 7 15
+------------+-----------+--------------------+
| 45 6 7 | 39 8 49 | 1 (25) 3(25) |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 4(5) 9 1 | 37 2 47 | 3(56) 8 3(56) |
+------------+-----------+--------------------+
| 7 8 9 | 1 4 3 | (56) (25) (256) |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
+------------+-----------+--------------------+
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 1(5) |
+------------+-----------+--------------------+
A UR two-stepper:
UR Type-[what?] <56>r34c79 => -5r3c9 [ <5=6>r4c7 & <6>r3c(7=9) & <6>r(3=4)c9 ]
UR Type-[what?] <25>r14c89 => -5r14c9; stte [ <25>r14c8 & <2>r(1=4)c9 ]
Or combined, for a one-stepper using UR externals:
[5r9c9 =UR<56>r34c79= 5r1c9,r3c1] - [5r3c9 =UR<25>r14c89= 5r9c9] => r9c9=5; stte
blue wrote: Does anyone have a link to an up to date, consise "UR types" reference (or any other advice) ?
blue wrote: Does anyone have a link to an up to date, consise "UR types" reference (or any other advice) ?
blue wrote:
- Code: Select all
+------------+-----------+--------------------+
| 45 6 7 | 39 8 49 | 1 (25) 3(25) |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 4(5) 9 1 | 37 2 47 | 3(56) 8 3(56) |
+------------+-----------+--------------------+
| 7 8 9 | 1 4 3 | (56) (25) (256) |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
+------------+-----------+--------------------+
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 1(5) |
+------------+-----------+--------------------+
A UR two-stepper:
UR Type-[what?] <56>r34c79 => -5r3c9 [ <5=6>r4c7 & <6>r3c(7=9) & <6>r(3=4)c9 ]
UR Type-[what?] <25>r14c89 => -5r14c9; stte [ <25>r14c8 & <2>r(1=4)c9 ]
Or combined, for a one-stepper using UR externals:
[5r9c9 =UR<56>r34c79= 5r1c9,r3c1] - [5r3c9 =UR<25>r14c89= 5r9c9] => r9c9=5; stte
I need help with the type names in the 2-stepper part.
The relevant details, are listed in brackets.
Does anyone have a link to an up to date, consise "UR types" reference (or any other advice) ?
+-----------------------------------------------------+
| 45 6 7 | 39 8 49 | 1 25 235 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 | 356 8 356 |
|-----------------+-----------------+-----------------|
| 7 8 9 | 1 4 3 | 56 25 256 |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
|-----------------+-----------------+-----------------|
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 7 15 |
+-----------------------------------------------------+
# 27 eliminations remain
r14c89 <25> UR Type 4.2233 <> 5 r14c9
-and-
r34c79 <56> UR via s-link <> 5 r3c9
(5-6)r3c9 =X-Wing= 6r3c7,r4c9 - (6=5)r4c7 ; DP => -5 r3c9
===== ===== ===== ===== Unique Rectangle Type 1
+--------------+
| . . . |
| 12 . X-12 |
| . . . |
+--------------+
| . . . |
| 12 . 12 |
| . . . |
+--------------+
===== ===== ===== ===== Unique Rectangle Type 2
+-------------+-------------+-------------+
| # # # | . . . | . . . |
| 123 # 123 | # # # | # # # | <3> eliminated
| # # # | . . . | . . . |
+-------------+-------------+-------------+
| . . . |
| 12 . 12 |
| . . . |
+-------------+
+-------------+
| . . # |
| 12 . 123 |
| . . # |
+-------------+
| . . # |
| 12 . 123 |
| . . # |
+-------------+
| . . # |
| . . # |
| . . # |
+-------------+
^ <3> eliminated
===== ===== ===== ===== Unique Rectangle Type 3
+-------------+
| . . # |
| 12 . 123 |
| . . # |
+-------------+
| . . # |
| 12 . 124 |
| . . 34 |
+-------------+
| . . # |
| . . # |
| . . # |
+-------------+
^ <34> eliminated (because of n-tuple relationship)
+-------------+
| . . # |
| 12 . 123 |
| . . # |
+-------------+
| . . # |
| 12 . 124 |
| . . 345 |
+-------------+
| . . # |
| . . 45 |
| . . # |
+-------------+
^ <345> eliminated (because of n-tuple relationship)
===== ===== ===== ===== Unique Rectangle Type 4
X-Wing in <1>
+---------------+
| . . . |
| 12 . 1X-2 |
| . . . |
+---------------+
| . . . |
| 12 . 1Y-2 |
| . . . |
+---------------+
===== ===== ===== ===== Unique Rectangle Type 5 (diagonal variant of Type 2)
+-------------+
| # . . |
| 12 . 123 |
| # . . |
+-------------+
| . . # |
| 123 . 12 |
| . . # |
+-------------+
^ ^ <3> eliminated
3-corner variant
+-------------+
| . . . |
| 12 . 123 |
| . . . |
+-------------+
| . . # |
| 123 . 123 |
| . . # |
+-------------+
^ <3> eliminated
===== ===== ===== ===== Unique Rectangle Type 6 (diagonal variant of Type 4)
X-Wing in <1>
+---------------+
| . . . |
| 1-2 . 2X-1 |
| . . . |
+---------------+
| . . . |
| 2Y-1 . 1-2 |
| . . . |
+---------------+
===== ===== ===== ===== Mike Barker's UR+2B/1SL ("half" of a Type 4)
Bivalues in [c1] and one SL in [r5]
+--------------+
| . . . |
| 12 . 1X-2 |
| . . . |
+--------------+
| . . . |
| 12 . 12Y |< SL on <1>
| . . . |
+--------------+
2x applications (equivalent to UR Type 4, X-Wing doesn't need to be resolved)
+--------------+
| . . . |
| 12 . 1X-2 |< SL on <1>
| . . . |
+--------------+
| . . . |
| 12 . 1Y-2 |< SL on <1>
| . . . |
+--------------+
===== ===== ===== ===== Mike Barker's UR+2X/1SL
Bivalues in [c1] and one SL in [c3] (aka UR Type 4)
+--------------+
| . . . |
| 12 . 1X-2 |
| . . . |
+--------------+
| . . . |
| 12 . 1Y-2 |
| . . . |
+--------------+
^ SL on <1>
===== ===== ===== ===== Mike Barker's UR+2D/1SL
Diagonal bivalues and one SL in [c1] or [r5]
+--------------+
| . . . |
| 12 . 2X-1|
| . . . |
+--------------+
| . . . |
| 12Y . 12 |< SL on <1> -or-
| . . . |
+--------------+
^ SL on <1>
2x applications -- with SLs in [c3] and [r5]
+--------------+
| . . . |
| 12 . 2X-1 |
| . . . |
+--------------+
| . . . |
| 2Y-1 . 1-2 |< SL on <1>
| . . . |
+--------------+
^ SL on <1>
===== ===== ===== ===== Mike Barker's UR+3C/2SL
2x SL in [c3] and [r2] for 1x value (aka Hidden Unique Rectangle)
+--------------+
| . . . |
| 12X . 1Y-2 |< SL on <1>
| . . . |
+--------------+
| . . . |
| 12 . 12Z |
| . . . |
+--------------+
^ SL on <1>
===== ===== ===== ===== Unique Rectangle (UR w/ 2x SLs for 2x values)
+---------------+
| . . . |
| 1-2 . 2X-1 |< SL on <1>
| . . . |
+---------------+
| . . . |
| 2-1 . 1Y-2 |< SL on <2>
| . . . |
+---------------+
===== ===== ===== ===== (diagonal variant)
+---------------+
| . . . |
| 12 . 1X-2 |< SL on <1>
| . . . |
+---------------+
| . . . |
| 2Y-1 . 12 |< SL on <2>
| . . . |
+---------------+
===== ===== ===== ===== Unique Rectangle -- "Short Forcing Chains"
+---------------+
| . . . |
| 12 . 123 | <123> cell is either <3> or else UR Type 1
| . . . |
+---------------+
| . . . |
| 12 . 24-1 |
| . . 13 | <123> cell equal to <3> causes <13> cell equal to <1>
+---------------+
===== ===== ===== ===== Unique Rectangle Meets XY-Wing
|--------------------+---------------------|
| . . . | . . . |
| -8 -8 -8 | . @18 . |
| . . @28 | -8 *129-8 *29-8 | *-cells act as pseudo-cell <12>
|--------------------+---------------------| pseudo XY-Wing <128> follows
| . . . | . . . |
| . . . | . . . |
| . . . | . 89 89 |
|--------------------+---------------------|
+--------+---------+------------+
| 45 6 7 | 39 8 49 | 1 25 235 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 | 356 8 356 |
+--------+---------+------------+
| 7 8 9 | 1 4 3 | 56 25 256 |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
+--------+---------+------------+
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 29 | 59 57 15 |
+--------+---------+------------+
*--------------------------------------------------*
| 45 6 7 | 39 8 49 | 1 *25 *25+3 |
| 8 3 2 | 5 6 1 | 4 9 7 |
| 45 9 1 | 37 2 47 | 356 8 356 |
*----------------+----------------+----------------|
| 7 8 9 | 1 4 3 | 56 *25 *25+6 |
| 6 1 5 | 27 9 27 | 8 3 4 |
| 3 2 4 | 8 5 6 | 7 1 9 |
*----------------+----------------+----------------|
| 12 5 6 | 29 7 8 | 39 4 13 |
| 9 7 3 | 4 1 5 | 2 6 8 |
| 12 4 8 | 6 3 2-9 | 59 7 15 |
*--------------------------------------------------*
UR
||
(3)r1c9-r7c9=(3-9)r7c7=(9)r9c7--------------------(9)r9c6
||
(6)r4c9-(6=5)r4c7-(5=9)r9c7-----------------------(9)r9c6
(9)r9c7=(9-3)r7c7=(3)r7c9-r1c9=(6)r4c9-(6=5)r4c7-(5=9)r9c7 => r9c6<>9; ste
David P Bird wrote:Blue, here's the UR inference I mentioned that can't be expressed as an AIC. See also Leren's response to it a bit further down the page.
--- UR+3U/2SL: the strong links are disjoint with different labels => "a" can be removed from "abY"
ab-----abX
a
b
abY-----abZ
+-----------------------------------------------+
| . . . | . . . | . . . |
| bF . bG | . . . | ab . abX | <- SL on a
| . . . | . . . | . . . |
|---------------+---------------+---------------|
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
|---------------+---------------+---------------|
| . . . | . . . | . . . |
| . . . | aH . aK | abY . abZ | <- SL on b
| . . . | . . . | . . . |
+-----------------------------------------------+
(a)r8c46 =externals= (b)r2c13 - (b=a)r2c7 => -a r8c7