Suppose we consider Sudoku puzzles, having 9 clues in B3, B6, B7, B8 and B9 boxes. How many clues must all remaining 4 boxes (B1, B2, B4, B5) contain to form valid Sudoku puzzle?
- Code: Select all
+-----+-----+-----+
| | |x x x|
| ? | ? |x x x|
| | |x x x|
+-----+-----+-----+
| | |x x x|
| ? | ? |x x x|
| | |x x x|
+-----+-----+-----+
|x x x|x x x|x x x|
|x x x|x x x|x x x|
|x x x|x x x|x x x|
+-----+-----+-----+
("x" denotes clue cell.)
It turns out (I've done exhaustive search), boxes B1, B2, B4 and B5 must contain at least 2 clues to form valid puzzles. There are 3 only "irreducible" minimal patterns (up to isomorphs), producing valid patterns, which have minimal number of clues in B1, B2, B4, B5 boxes.
- Code: Select all
Q1 Q2 Q3
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|. . .|x x x| |. . .|. . .|x x x| |. . .|. . .|x x x|
|. . .|. . .|x x x| |. . .|. . .|x x x| |. . .|. . .|x x x|
|. . .|. . .|x x x| |. . .|. . .|x x x| |. . .|. . x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|. . .|x x x| |. . .|. . .|x x x| |. . .|. . .|x x x|
|. . .|. . x|x x x| |. . .|. . .|x x x| |. . .|. . .|x x x|
|. . x|. . .|x x x| |. . x|. x x|x x x| |. . x|. . .|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|x x x|x x x|x x x| |x x x|x x x|x x x| |x x x|x x x|x x x|
|x x x|x x x|x x x| |x x x|x x x|x x x| |x x x|x x x|x x x|
|x x x|x x x|x x x| |x x x|x x x|x x x| |x x x|x x x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
Here are examples of valid puzzles for Q1-Q3 patterns:
......689......137......254......792.....9368..2...415235197846817546923964238571
......689......371......245......596......427..5.27138541873962832619754967245813
......689......217.....6354......493......165..5...728317529846548631972692784531
Patterns Q1-Q3 are minimal - if we remove at least one clue in the B1, B2, B4, B5 boxes area, resulting patterns will have no valid puzzles.
Every pattern, containing 9 clues in B3, B6, B7, B8, B9 boxes and having valid puzzles must be subset of some isomorph of pattern Q1 or Q2 or Q3. Moreover, let's consider any pattern, producing valid puzzles. Each Sudoku grid has 9 4-box subsets forming "square" (occupying 2 bands and 2 stacks). Patterns of clues in each such 4-box subsets must be superset for some Q1-Q3 4-box (B1, B2, B4, B5) patterns.
Serg