inferior puzzles thread

Everything about Sudoku that doesn't fit in one of the other sections

Postby gsf » Wed Mar 22, 2006 3:52 pm

I count F:naked-single and N:hidden-single as separate techniques
for each constraint propagation iteration (grid scan) F is attempted first,
if F makes no progress then N is attempted (this goes the same for the remaining methods)
when a method makes progress a new iteration starts with the first method

this means that for a given method order (mine is FNBTYWUG),
solutions will be biased to the low-order methods
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

Postby JPF » Wed Mar 22, 2006 4:19 pm

Hi Vidarino , Hi Ruud

Could you help me on this one (what is the number of steps)
Code: Select all
 . . . | 9 . 3 | . . .
 . . 3 | 2 . 7 | 4 . .
 . 7 . | . . . | . 8 .
-------+-------+-------
 7 8 . | . . . | . 3 4
 . . . | . . . | . . .
 6 4 . | . . . | . 5 1
-------+-------+-------
 . 1 . | . . . | . 4 .
 . . 7 | 3 . 6 | 9 . .
 . . . | 8 . 9 | . . .

Just to be sure I understand the rules of the game.
Thanks.
JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby gsf » Wed Mar 22, 2006 4:47 pm

vidarino wrote:Hmm, not from where I'm standing, I'm afraid...

try the ones marked F only
but if you order N before F you will get different counts from mine
vidarino wrote:(Note that I'm "borrowing" your one-letter step codes... ;-) )

no problem

my solution is shorter than yours arguments have a better
chance of reaching consensus than my solution is longer
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

Postby Ruud » Wed Mar 22, 2006 5:13 pm

JPF wrote:Hi Vidarino , Hi Ruud

Could you help me on this one (what is the number of steps)
Code: Select all
 . . . | 9 . 3 | . . .
 . . 3 | 2 . 7 | 4 . .
 . 7 . | . . . | . 8 .
-------+-------+-------
 7 8 . | . . . | . 3 4
 . . . | . . . | . . .
 6 4 . | . . . | . 5 1
-------+-------+-------
 . 1 . | . . . | . 4 .
 . . 7 | 3 . 6 | 9 . .
 . . . | 8 . 9 | . . .

Just to be sure I understand the rules of the game.
Thanks.
JPF

I counted 13 steps

These are the steps (N means naked single):

Code: Select all
 1: R6C5=3, R6C4=7N
 2: R7C4=5N,R6C3=9
 3: R7C6=2N,R7C1=9, R2C2=9, R4C5=9
 4: R5C5=2, R7C5=9N,R6C6=8N
 5: R6C7=2, R3C9=9, R5C8=9
 6: R4C3=2, R3C7=3, R4C7=6N
 7: R4C4=1N,R3C1=2, R4C6=5, R5C4=6, R7C7=8N
 8: R3C6=1, R7C9=3, R3C4=4, R5C6=4, R5C7=7N,R1C3=8, R5C9=8, R8C1=8
 9: R5C3=1, R1C1=4, R8C5=4, R9c3=4, R7C3=6, R2C5=8
10: R2C1=1, R8C8=1, R9C5=1, R3C3=5N,R1C2=6, R3C5=6
11: R1C7=1, R1C5=5, R2C9=5, R9C7=5N,R2C8=6N
12: R8C9=2N,R9C1=3N,R5C1=5, R8C2=5, R9C9=6
13: R1C8=2, R9C2=2, R5C2=3, R1C9=7, R9C2=7


Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby ab » Wed Mar 22, 2006 6:24 pm

vidarino wrote:My solver, and I believe ab's too, counts like this;
1. locate singles (naked or hidden) - but don't place any numbers
2. place all located singles in one sweep
3. rinse and repeat until solved


very nicely put Vidarino, that's exactly what I'm looking for.

gsf wrote:an alternate way of counting would be to incrementally make the moves as they are
found during each scan, which would tend to increase the per-scan count and
decrease the total number of scans, closer I think to what human solvers do


I agree that this way of analysing a grid is not what humans do, but it seems to be the best way of analysing a path of singles objectively. Two human solvers will not take the smae path through a puzzle, since placing one number might uncover several new singles and which one you spot will vary.

Ruud wrote:BTW, I do not see these sudokus as inferior


Neither do I. It was a play on the idea of superior puzzles and also an eye catching thread title for the forum:)
ab
 
Posts: 451
Joined: 06 September 2005

Postby tarek » Wed Mar 22, 2006 6:32 pm

Finally got it:D ,

Had to tweak the solver for this one....... I searched through my database but nothing was that satisfactory, so I have to generate some more...

Vidar, your last puzzle needed 27 steps on my solver:D

This the toughest I found on the database.... a shy 18 stepper:(
Code: Select all
Tarek #002
 . . 3 | . 2 . | . . . 
 . . . | . 9 . | . 7 . 
 . 6 . | . . . | 4 3 5 
-------+-------+------
 4 . 6 | . . . | . . . 
 7 . . | 3 . 8 | . . 6 
 . . . | . . . | 3 . 2 
-------+-------+------
 1 4 5 | . . . | . 8 . 
 . 9 . | . 6 . | . . . 
 . . . | . 8 . | 5 . . 

Tarek
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Postby ab » Wed Mar 22, 2006 8:05 pm

I've updated the puzzles list on the first post and decided that puzzles need 15 steps to qualify. I might regret that, maybe it should be 20 steps, but then none of my puzzles would qualify.

Only 2 of gsf's lst of puzzles qualify, but they are worthy contenders, each taking 20 steps.

So far vidarino has the most steps, 27 with this puzzle:

Code: Select all
puzzle #11 (vidarino) 27 steps
+-------+-------+-------+
| 2 . . | 9 8 . | . . . |
| . 7 6 | . . . | . . . |
| . . . | . . . | 4 2 . |
+-------+-------+-------+
| 3 . 8 | . 4 . | . 1 . |
| . . 4 | . 9 . | 3 . . |
| . 6 . | . 2 . | 9 . 4 |
+-------+-------+-------+
| . 3 5 | . . . | . . . |
| . . . | . . . | 8 4 . |
| . . . | . 6 7 | . . 3 |
+-------+-------+-------+
ab
 
Posts: 451
Joined: 06 September 2005

Postby Ruud » Wed Mar 22, 2006 8:27 pm

If the puzzles would require at least 20 steps, I can offer these:

Code: Select all
300000070175090000009500300000000050080231060040000000004009200000080635050000007
000005934400800200000009000760000015000000000340000076000600000003007002618200000
005900000400000050000006408010860002002030500600042010206500000030000001000008700
430080000000007100600900003020001600010000030009700080500003006008400000000060075
005300070183000000000940000407009500000050000008700104000093000000000621070008400
070030004600200070000800305001000030000050000040000100204009000010005008800070040
080060003709004000000900001070000300050020090006000040800005000000400502300090060
300076000050001002048000000070040010500030004090010070000000480900100050000890003
000000079000400001000001604007600085060090030310005400805300000900006000730000000
010000004600200000050007009000402050520000063060105000700800020000006001400000080
002003061070506000060000000400000809000000000907000004000000020000907010390400700
080005000090000061000201004900000406060030020208000003400802000530000040000600070
038000701005200000007000006000002030000853000060400000900000400000001500201000690
000080002000600030900020740000009500001030400006200000083010007050006000100040000
007608000000000050465000002090030000300080001000010060200000934070000000000405200
200083000000010780000004010006005000400000009000200800070500000098030000000490005
000000130000095000007030002004300580700000004091004700400050900000980000075000000
000000003000060094800005200020700400070619020006002030009300002140050000700000000
030002000090000050000054800007200060900070001010009400002130000080000020000600070
000301090800000000540007030600070080000020000010080004080500071000000009050604000
050100048300600075000050000000200083070000050210006000000020000920008007860007020
006000005300600010080000403500020030009040200010030004601000070020005006700000800
000000089090078006006000400005006100010000090009300200008000300700250040450000000
900000700300500000100600054000400270700050008063001000510009006000004007002000003
500000007000197000200000600000250030012000570090031000004000003000349000600000002
200100000430006000009087000000400307050000020906003000000390600000600048000002001
005000406030170000000009080702000000000563000000000904090700000000036040107000200
080001700100000029000007004004806000800020001000105800600400000530000002002600070
003200000700000400090005067005070080800040002030080700160700090004000005000008100
090800030230000000000000950601007000080050060000900107065000000000000074010004080
406000900500000730000805006000060049000030000350080000600207000017000008005000603
000000785841020000000600004300009000080010030000500002700001000000050927493000000
200070000900001300074020000060800000001060700000005020000050240003200008000090001
820040000000000015501300000050007800300000009009200040000008507230000000000060021
309000500200005070008410090000004008000000000800300000010076300090800005006000702
000700500000008476930000000070900000006020800000004050000000048785100000001003000
004009506000020008070004200006500010000000000080001600008700090200040000105800700
900000648061703000000000000009000007000514000300000200000000000000207810246000009
050000020004000300603105000040530000007060400000041060000709204005000600010000030
040030001500019070720000000410000800000090000009000024000000037060350009100060080
920000000007600090000100002002000064000834000190000500700005000080009300000000025
700000025000008001000005063020800600000030000005001070150900000300600000280000004
200000000093040060000800900030500208005030600804007010002001000060070590000000003
700500060400007000006080450070000300000371000001000080062040100000100009030008002
040300900076002000000040600000010800090408060003070000001020000000600790008005030
008000003002706810000010000070000200150020036006000090000070000021309400900000600
006010070003400000400700008001000200800503009007000600100009005000006800020050900
000600801740000000002070000290000340000050000071000059000020700000000093908001000
300800000000000007560000024000086050009000100030570000970000043100000000000004008
801600000065200080000000001079000000030080060000000910200000000090003720000005103
003120900005000000600000720270003000000000000000700018084000009000000300007095600
420001000700000004000900000004060300091020540007050900000008000800000007000700026
600030075090000060005400000804000200000804000003000104000005800020000010570080009
000801050000000072050040800090500006006020400700004020005010080630000000040209000
060000000000703560000090720080300004600000005200007090038010000049605000000000050
040930000080406300500000060100004600000000000005200007060000005009701080000062040
300009702070002000905010000000200030010000050080004000000080304000600070104300006
903005000200006007000800400006000072080000030530000800005002000400700008000900605
200007000000900023050000640000008500090602010001700000087000030630001000000500004
000000000006970205400000890700060010000795000050030002037000004509082600000000000
430100000000030507070206100050000800000000000002000030006507080309080000000003029
800000700000031400200608300000000002093020640700000000001903004005460000002000003
700004000900600010020057300500000020003000100080000007006810030090006005000300001
004560000006030290300000007050800001000000000100009020200000006068070300000015700
006070009000650230050000000700100068000000000210008005000000090072089000300020500
301700000000000003409600000050420030010000080040071090000004701600000000000005902
000002004008050010000079060007000003304000502200000900070510000050020700600800000
800070600005000380200108000060002700000010000008500030000603005091000800003090002
010904006009000008005000400000002503007090600403500000004000800500000700700103020
600020700009060050008004000005100009030000010200007800000900500060040300003050007
400001007950003000030008001024000900000000000003000210300400080000700032700900006
002900000070600000000012806040000001090070080500000090107540000000009040000008200
380000005000060040007004900000000280000109000061000000009700100040080000200000067
004001090000005061000900040301000000007304600000000805090007000720400000060800200
000500370630070080002000000007180003000000000800095600000000500020060048049002000
005100800040003000620700000058000074000020000430000920000009045000500080007004100
001005060400900002000007080000006804900000003302800000080700000600003001020500700
000000070013050000720003006000400100900070005001009000600800094000060510030000000
607030004000804500300000000000009020500000007020100000000000008006307000800060102
000100000008000357000030480509010020000090000010060908046020000321000600000003000
030001002020500000047000050003700800800000007005002600060000430000008010700400060
600009007010043000009500020000000051000712000840000000090004800000350060100900004
080009300000500004002070600060800003100040005300006010004060900200005000001900040
450000007002060900000500040080000003009040100600000070020008000001050200900000064
000001030020003400031200005800000003000679000900000006700006280004100060090400000
780003900000010000000000052900000200016020830005000001360000000000030000002900074
006020500040000090002040300209000705000103000000000000700000009090000040300805006
610000020730000400000607000040100000009000200000003060000508000005000079020000031
000180005000006007008070002007010980000000000034050700800030200100500000600091000
000000920005300048000070003080200009100090006200007010300060000970008100051000000
709000021200000000050030080020600008900070004800009050080010070000000003560000802
020000007000040906003100000800007000004060200000900008000006300502030000700000090
106987305000000000000302000058090630309020507000000000900000001000000000210030089
805004000030050001000060950000000406080010070409000000063020000500090020000700608
003890001700000500004006030001500006000060000300007100040100600008000005100059700
002068000500000000600001080400000050067000290030000007040600001000000003000350700
090200040003500000050610000007000602040000070201000400000056010000001700020008090
040600000000003405250100000079000000003020600000000780000001074608700000000009020
007000002096003004000690007000000010000574000040000000100052000500800260900000300
000360900050000004900400003100005000040070060000200009500008007200000010008012000
000060000001400003000508206893000000060090070000000932506109000700004600000020000
100004030000000200206807000780000000050108090000000014000305608005000000070200003
004000062000970000500004900020800040300010008010003090001200005000061000680000200
000006001000050790700003000010002000046080510000600030000700002081030000900500000
403000790608000020000020006000004001050060070100500000300080000070000905042000803
000007410300000500040036009000009100070000060008700000600320050009000001023500000
000400900000032006807060020900040201000000000301050004050020308100390000004001000
700000830000360007000080100060900300010000060007001020008090000200053000051000008
006005002570060900000900400209000000000801000000000803001002000004070038700300600
002000000800050907410002000005340001000090000300021600000800079709030006000000500
000009000530070190000500000008020064000708000490050300000007000085060047000100000
207930000000000103500800029000200900090000060002008000840006002301000000000084701
472001000000800009000000004030050100090308070001060020300000000900004000000600851
000000020020860100015200000080000500500601002007000030000005390008093060040000000
063009800045000009000001040008000035000040000750000200010800000400000360009600520
500200100007000009039000000050001007000687000300900020000000980400000500006004002
000067800000000030070402005002000009600010007300000100800103050030000000006980000
010000500040007800000105000060001005107000604200900010000409000006200090003000080
000610000000008400050000091600002700700000009008500003890000050007200000000076000
010600090008030000700000304900400000003102700000006001109000007000020500040008010
000900065560700000000060340040000203000103000709000050095080000000001032810007000
003500007008001000006000020074050010000060000050010680020000500000300900800009400
008010006500009000040000090300800050007503900020007008060000020000200004400090800
000241000000080000300000004020000060500604008004070100600090001870000036000000000
900070002600204008020000030060000020308090406000040000200000009000517000070000060
209408607000000000008020900620000043000000000000567000500204006080070030010000090
600804001001000600308000904020010040090603010000000000500020006004000500010060030
207000309000050000604000805000972000070000010000604000000503000020000060030060080
080035000400000090790060000070600500900000006002009040000050032010000005000140070
004003001060000030100540009000000700006209300008000000700052008080000040200300600
090004000000005810010380000100000007000523000200000005000042080023700000000100090
402500000900000038006000000000300256000407000329001000000000300750000004000003805
210600004080025000600000000002400900007000100003009200000000008000930010500004072
000904080030000900009850006003000608010000040608000500500036700001000060090401000
003700010004380090007000005100600000040000060000009008500000800090032500080006400
070060090000000000009104500600302009500000002100080007001000400000493000000807000
091600000000400005000700040200000084007000300540000006050009000300001000000008610
005010004000200008000080010901340000200050001000028706020090000700004000600070500
000005201007000040200009080500020400000901000009070003070200009090000300103500000
000900010600058000340010500800000090000237000050000002008070035000480007070001000
020400500091000000607003000200030400050000070004010006000200801000000340009008020
009850200200017080000000070000008036000000000340900000050000000010670005008031700
000749010800030000030000000180200060004070200060004059000000090000020005070183000
064005009000024000070600000080000605200000001301000040000009010000840000800200930
010092000800000006004006320003000008000215000200000600079800100300000007000970060
100000000070500140040060080700004030002000700080200005050010060094007050000000004
000000600230800000000005740000409007014080920900503000056900000000004091001000000
002005000009001087000000100090080000860000093000030070006000000450900600000200400
006094200009005000040700000070100005030060080900007010000008060000400900008630400
000907030506000000130000007001704600000000000004608300200000084000000209080405000
200600003000080000000320570602001040009000800040900601018043000000070000400008005
500200000000800503006057200100700000700302004000004006002690400809001000000003008
000100590056000001900004003002700030000010000040002600500200006300000920087006000
900073000300000100047000000280500000070020040000009036000000910002000007000140008
800004300000000018005207000004050000080000070000090100000301900620000000009400006
000900080054310007000400001800000050007040100060000002500006000200081940080004000
300000210007030000001002007030700000070103050000006040400500800000090400056000002
500042900900600005010000200000000510000381000047000000008000090300009001001250003
000230000000008000901005270300000802006010400702000009057800604000500000000047000
007401006030090040900000010008007600000000000003200500040000001020030060600704200
000803000050090080006000200500030009400080001300506008000000000001000600607000903
000008902608001005000003010000000876000000000973000000020400000100900403704500000
047000920000000000000206000015030790200090003000010000300000004070801030401000509
506309000004000010000000920007006000000715000000400100062000000030000700000602801
895400000470069000000000000104000050003070400060000809000000000000180076000004531
000087010100900607006000009009000020000050000030000400700000900801002003040130000
030009000002000090010780000081000006073050820600000750000032080040000200000900060
070300040008700200025000300800400000017000890000009005002000960003001500090003020
003000000070800039900706000760900004000000000800005092000301006450009010000000500
090020000010000038400030500000005009040602050700100000006080001230000070000050090
000000091004070200020510000760200000008000600000003018000059020009060100370000000
000000904300000070097008000008300600060741030009005400000200750010000006703000000
030000000000007600082059000070000508040070030605000010000260140009100000000000050
070000030900750000000042100006300900800000005001009800002870000000095006060000020
000000060020460070900205000106000005000030000200000703000301009070084050080000000
800002010600000007000030090000001908050806020207900000090050000300000009020100006
130000900260000000900371000300000800000458000006000004000164002000000047002000091
000000080086100004200063000001700009000619000400002700000380007800007530090000000
500006000061003040040000002950002000007000200000400078800000050070800130000900006
000000005820000670000069001000004080160080057040200000700350000051000038600000000
000040067309702000000600900000000008700030009400000000005003000000107603190080000
005703020004090001200006000409000000050000060000000702000400005100030800030807400
300106000000000380005040002040005000200671005000200010500090700089000000000508009
000001350081009000000400002035007009000090000100800740800006000000500870067300000
000100780300040000000000021001080070000735000070090600420000000000060005098002000
000005006089000030200070800870000600060030050002000071007040002040000760500900000
000800002004005030003000100000003005908060401700200000006000700080900600100004000
306000001500100030004700050000000004080030020900000000030008100070001003200000806
000050000206001300000300945900000080500000004060000001375009000002500609000080000
307000000050200400200040730000003000080090020000600000096020001001004070000000504
001700002862300000000050000000000608200080005407000000000090000000004157600003900
705600000900000600800400100509070000007010400000020508003008001004000002000003704
204000000000005380000730600000800001060040030100003000005094000079200000000000108
000009030200800000031070005004008090000050000070600200500090310000003007040500000
370086000000000000005430010102500009000000000600008703080071900000000000000820054
000009010008040000320008050000900020006050100050003000010700043000060700040500000
030400009600900000080003050497000000008020900000000368070500080000007001500006090
000008010600000509054900000070020604000060000502090030000007350801000007020400000
030400002000500609096000003020067000000000000000130070200000480809005000600001090
000003100539000008000850002100500000005060900000008005200075000700000264003100000
000900000003005814000010006700500001800060009200003005300080000425600100000007000
014000025080501009000600000400002000009010500000400007000007000200103090530000870
900003800005760000000000473000000508001070600208000000186000000000014700003900002
400900020002060018000000000000340105080000070905081000000000000860090400050006009
100008000004390010700000900050007000061020370000900050007000005030081200000500009
900000170105008000006000005200630800000010000003054007300000600000700908042000001
050000071400306000000001500100030700800040006002010003006100000000402005970000020
000900001300050080008004053507020000000040000000010209860700500010030007900005000
000057100070406300520000000000020005090040060600010000000000073009502080004370000
000002000900600310870040000032000041000050000610000580000090078081003006000400000
000070000900000006213009000704008000000942000000500302000800915600000004000030000
000701000700080000004000200020000807800375004306000090003000100000050006000406000
070100005000900300084000010700010050002070600060090008030000470007005000800001060
000040000000000719000700506000100802060070030809003000602004000971000000000030000
050020600028004000900000001000200008095080210200003000700000004000100970001090030
085400060000061700009000010000500800010070030008002000020000500004120000030004270
840003200000600008000000001020590400000060000009047050300000000400001000006900037
000076290900000105000200030060000300700000008001000050050004000803000007047690000
030004000000910840002007100010000000090050060000000020006200700054098000000400030
001000040000024008000806709300001000005000600000400007807205000600910000020000300
010060002050000001006500080000900100200080003004006000020009400700000050800040070
040037050700000004000500090005000810000060000078000300020008000600000002080140070
000200000350601000068000009030000420000482000014000090500000130000703062000004000
087005009000001000300090040054009000000070000000600810060010005000500000800300670
000046000080002300600000052769000003000000000800000916930000001004300020000750000
060002000005006900000048070002000037800000006750000200090150000006200300000400090
004500000060010820090000500000007200056000930008900000009000050037050040000002300
000630100053007080010000000008000059700090006140000700000000060030500270007023000
009003060000005400025000000004020009008040600600090700000000870002100000040900300
000000580002008004071090200100200000000736000000005009004020790900800600018000000
500006047003100060004090000000004000009615800000200000000030700030001200970400005
500000000170003000000100485046800000000070000000005870253001000000400092000000003
400018000700003500056000200009005000080000010000700600004000950001600002000930007
800900000003200056000030048500100000090050010000004007640090000380002600000006002
000000810040003000607000304002009040000604000090700100409000703000400050021000000
000000600028700001400050800000003050000689000080100000002060009500004180007000000
900008050000710020001000086000000461000000000893000000420000600070063000010200008
600900000070042089001050000080000407000000000302000090000090500960720010000008003
003600000000409100060000093300500000050723040000006008410000050005801000000002600
000769000580000900700000000805030000210070095000020407000000004002000063000452000
905020040301000000000009200000980100040000060002031000003200000000000507050070608
057301000000009000200000035000000003014020960900000000480000001000700000000603280
605080000010407008000600000007008004050060030300900200000009000100206040000070609
901300040006000008003009000000013050005000200090740000000100600500000800010008905
008000300060800000050040700000009800480050021007600000002010070000007030009000400
009060200020001006600009008260003000000090000000700061100300007300600040006040500
050030048000807060400001000200000005010070080700000004000900001070402000140050030
030000000201050000700000023006300800910000067003002100490000008000070609000000070
004001000050876000100000000080700060760050091010009030000000008000695070000300200
006100520000200009090000000003058000007040600000670200000000060500004000071003800
010500800000902010059000000300010002700000006900040005000000950070604000004005070
010030006900000000800006017000100089000958000190007000460200001000000003500040060
700000640010900500000003000600050010001080900020040008000700000006001020084000006
003860002009000060002500010001009040000000000020300800050001700070000400200076100
001080420000000000400000350070400060000326000050001090034000007000000000017050800
000900740040100600100200008000600050000070000060008000800002006004001030059004000
000006000000420960060003007010000380800010009036000040600900030042087000000200000
006000300050000006310540000040300000100275004000008070000052091900000020008000700
000300607000040010018007500080000904000020000906000020009400260070090000501006000
010000700080700260000021000800000003004386500100000004000270000061009030009000020
009006000200080300030700406000001040000070000010500000804009070003060008000300200
080200040060803090200400000107000300000000000006000105000001009040907080070005010
200100408000008010008000069000004600006050300009700000540000100060800000903001006
091000000000070930007600000300002000510000047000500003000008300072090000000000180
290006000000050070300002400004200900070000040006007500009700001050080000000500083
062000180000400000003908000007000408100050003308000200000106800000007000076000320
109000600200300000000760000300000005804090306600000004000072000000004009005000103
800400007007000000010008430005000069600030005730000200064100080000000600900005002
060000201008700009000032004050070000000603000000090030900420000700001400105000080
800003100010800030000070005000001068005000200670900000200080000030002090008600002
001000050000904073000000000008050320030206010042090500000000000970605000050000800
000006950060080000020003000470200000600000001000007084000700010000050040058900000
207000090000230010060100000001000823000060000549000600000008030030092000080000709
000003250004010003000002070050000480002070600097000020060300000100040700025100000
000300500200100000060000902000209740020000080054706000801000070000003001009007000
000007090400000020500120030000060207800000001906070000060045009030000005090700000
007000000060580070502300000000006005008030100700900000000004809090012030000000400
000800010005704000060900000320000790008020500019000026000007030000308400040006000
800100005560007200000000400040300500300070006001002040007000000009700032600001008
000009051400003000800006204000000090000231000050000000603400007000100002910300000
000690008300450070060000001400000300070060040008000002200000010040026009100075000
070304008080000030000010570306000000000429000000000102038050000040000060500607090
080000003300000000176050020000260095000000000710049000020080176000000002500000040
000006400084009020010080000300000094008070600940000005000030070070500140002600000
030001000065009700000000016207000040600090008080000905510000000004100390000800050
000600070820007004000009500709200000080090040000008607005900000100800063060002000
000090803085400000200000000040900076000030000560001040000000008000007260108020000
910008700800007010002000000008000040000895000050000300000000200030100004009200065
000046300008900040000000600076000100030070090001000480003000000050004700009510000
060300000090400800000090602700000500650000073009000008304050000006007010000001050
057300000000040050402000001300060400000283000009050002500000804010030000000001590
000000030000004500096010080000020107300050006204060000070080620005900000080000000
000208030010000090004300500070000059300000001840000070002006700050000020090804000
002001000000500030470060020000003087020080060350900000090030054040002000000700800

But if you insist on 15 or more, I can submit another 13,000:D

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby ab » Wed Mar 22, 2006 9:11 pm

Yes maybe it should be 20. Also like Tarek maybe people should be limited to 15 puzzles.

I haven't got any 20s the best I can do is 19:

Code: Select all
                 
.9.....7.
2.7.....9
....5..4.
...3.5...
..2...8..
...4.9...
.5..1....
4.....6.8
.6.....9.
ab
 
Posts: 451
Joined: 06 September 2005

Postby vidarino » Wed Mar 22, 2006 10:57 pm

OK, here's one more. It takes 25 steps (or 31, if you count naked and hidden singles separately), and is sneaky enough to open with 5 singles, then a long series of very few singles, before collapsing in the end.

Code: Select all
+-------+-------+-------+
| . . . | . . . | 9 . . |
| . . . | 5 . 8 | . . 4 |
| . 3 . | . 7 . | 1 . . |
+-------+-------+-------+
| . . . | . . 2 | 7 . 6 |
| . 1 . | 4 . 3 | . 9 . |
| 2 . 8 | 1 . . | . . . |
+-------+-------+-------+
| . . 9 | . 8 . | . 4 . |
| 8 . . | 2 . 6 | . . . |
| . . 2 | . . . | . . . |
+-------+-------+-------+


And another one, which only needs 21 steps, but might be of interest since it only contains 20 givens;
Code: Select all
+-------+-------+-------+
| . 8 4 | . . . | . . . |
| . 9 . | . . . | . . . |
| . . . | . . 6 | 1 . 4 |
+-------+-------+-------+
| 5 . 7 | 6 . . | . . . |
| 4 . . | . . . | . . 5 |
| . . . | . . 3 | 6 . 9 |
+-------+-------+-------+
| 2 . 6 | 1 . . | . . . |
| . . . | . . . | . 5 . |
| . . . | . . . | 3 8 . |
+-------+-------+-------+


And a 23-step one that starts off with only solitary singles;
Code: Select all
+-------+-------+-------+
| . . . | . . . | 5 . 4 |
| . . . | . 2 . | . 1 . |
| 2 9 . | 5 . . | . . 3 |
+-------+-------+-------+
| . 4 . | . 3 . | 6 . . |
| 6 . . | 4 8 1 | . . 5 |
| . . 8 | . 5 . | . 4 . |
+-------+-------+-------+
| 8 . . | . . 3 | . 9 6 |
| . 3 . | . 7 . | . . . |
| 1 . 6 | . . . | . . . |
+-------+-------+-------+


I have a few more tucked away (some 1600 puzzles requiring 20+ steps:) (but no more 25+, hrmph...) ), but I'll see if I can single out (har har) some of the more interesting ones.

Vidar
vidarino
 
Posts: 295
Joined: 02 January 2006

Postby JPF » Thu Mar 23, 2006 5:18 pm

Thanks Ruud, for the explanations.

Well, living not far from Monte Carlo doesn’t help.
Like ab, I’m stuck with 19 steps (using Vidarino’s way of counting).

In addition, the puzzle is ugly, but does have some symmetry :
Code: Select all
Puzzle JPF #B01

 4 7 . | 9 . . | . . 5
 . 6 9 | 7 . . | 3 8 .
 . . 2 | 5 . . | . . .
-------+-------+-------
 3 . . | . . 1 | 5 . .
 . . . | . . . | . . .
 . . 5 | 6 . . | . . 8
-------+-------+-------
 . . . | . . 7 | 8 . .
 . 8 4 | . . 5 | 9 2 .
 7 . . | . . 6 | . 5 4

19 Steps : 5,2,2,3,2,3,2,2,1,3,3,4,1,1,1,5,6,4,3

I’ll try again.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby Ruud » Thu Mar 23, 2006 5:33 pm

I just discovered a new 25-stepper in my latest batch of sudokus.

The solving path is pretty narrow for the first 40 placements.

Code: Select all
Ruud 25#2
. . .|. . 2|4 . .
. . 2|. 4 .|. 8 5
. 6 .|. . 3|7 . .
-----+-----+-----
9 . .|. 7 .|. 5 .
. . .|. . .|. . .
. 7 .|. 5 .|. . 4
-----+-----+-----
. . 3|6 . .|. 7 .
5 4 .|. 3 .|1 . .
. . 8|1 . .|. . .


I wonder what would be submitted if there were no symmetry requirement...

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby gsf » Thu Mar 23, 2006 5:57 pm

Ruud wrote:I wonder what would be submitted if there were no symmetry requirement...

these 2 (non-symmetric) can be solved with naked singles only
each with 34 batched naked single steps

Code: Select all
. . 3 | . 5 . | 6 . .
4 . . | 1 8 9 | . . 7
7 8 . | . . . | . . .
------+-------+------
2 . 4 | . . . | . . 1
. . 8 | 6 . 1 | . . 5
. . 1 | . . . | . . .
------+-------+------
. . . | . . 8 | 9 . .
. . 5 | . . 4 | . . .
9 . . | . . . | 2 . .


. 2 3 | . . . | 6 8 .
. . . | 1 . 9 | . . .
. 8 . | . . . | 4 . .
------+-------+------
. . . | . . 1 | . 6 .
6 . . | . . . | 5 3 .
9 . 5 | . 3 . | . . 7
------+-------+------
. 1 . | 2 . . | . . .
5 . . | 7 . . | . . .
8 . . | . . . | . . 3
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

Postby vidarino » Thu Mar 23, 2006 6:21 pm

Here's a nice one that is solved in 21 steps by the current counting method, and 39(!) steps if hidden and naked singles are "split" (a.k.a. gsf's counting method).:)

Code: Select all
+-------+-------+-------+
| . 1 . | . . . | 7 . . |
| . . 3 | . . 1 | . . . |
| . . 9 | . 3 . | . 1 6 |
+-------+-------+-------+
| . . . | . 2 . | 9 4 . |
| 5 . . | 1 . 9 | . . 8 |
| . 6 2 | . 5 . | . . . |
+-------+-------+-------+
| 7 4 . | . 6 . | 3 . . |
| . . . | 2 . . | 4 . . |
| . . 5 | . . . | . 6 . |
+-------+-------+-------+


Vidar
vidarino
 
Posts: 295
Joined: 02 January 2006

Postby JPF » Thu Mar 23, 2006 7:34 pm

I only found 2 non-symmetric 27-steppers in the 17s list from gfroyle :
Code: Select all
000080200010000500030000040000603400800000000700000000000100007000000089200060000
200060800000001300000075000050000071003800000000000000470000050000400200000000000


JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

PreviousNext

Return to General

cron