In this puzzle:
*-----------*
|...|34.|..6|
|.6.|78.|1..|
|...|.65|.72|
|---+---+---|
|.48|52.|361|
|615|.3.|72.|
|23.|61.|.8.|
|---+---+---|
|12.|47.|6..|
|..6|.9.|...|
|8..|.56|...|
*-----------*
*-----------*
|...|34.|..6|
|.6.|78.|1..|
|...|.65|.72|
|---+---+---|
|.48|52.|361|
|615|.3.|72.|
|23.|61.|.8.|
|---+---+---|
|12.|47.|6..|
|..6|.9.|...|
|8..|.56|...|
*-----------*
{579} {5789} {12} {3} {4} {12} {589} {59} {6}
{459} {6} {249} {7} {8} {29} {1} {3459} {3459}
{34} {89} {1349} {19} {6} {5} {489} {7} {2}
{79} {4} {8} {5} {2} {79} {3} {6} {1}
{6} {1} {5} {89} {3} {489} {7} {2} {49}
{2} {3} {79} {6} {1} {479} {459} {8} {459}
{1} {2} {39} {4} {7} {38} {6} {359} {3589}
{3457} {57} {6} {128} {9} {138} {24} {134} {3478}
{8} {79} {3479} {12} {5} {6} {249} {1349} {3479}
The candidate 4 in (9,8) can be eliminated. Assume it is 4. Then (9,4) is 1, and (9,7) is 2, and (8,7) is 4 -- which is impossible because there is already a 4 in that box.
Rubylips' solver program revealed this to me. Until then I was stuck.
But this should be easy to find, no? How does one spot such a pattern?