.
===> First step: write it as a sukaku-grid, where all the domain restrictions have been applied
(this is how you should propose such puzzles):
- Code: Select all
+-------------------------------+-------------------------------+-------------------------------+
! 13579 123456789 13579 ! 123456789 8 4 ! 2468 6 13579 !
! 123456789 123456789 123456789 ! 1 123456789 123456789 ! 123456789 123456789 3 !
! 13579 123456789 2468 ! 123456789 123456789 123456789 ! 2468 9 13579 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 2 5 ! 123456789 2468 123456789 ! 3 123456789 123456789 !
! 123456789 7 8 ! 13579 123456789 2468 ! 123456789 123456789 123456789 !
! 4 123456789 3 ! 123456789 13579 5 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 2468 123456789 2468 ! 8 123456789 123456789 ! 13579 123456789 13579 !
! 5 123456789 123456789 ! 123456789 4 9 ! 123456789 123456789 123456789 !
! 2468 9 13579 ! 6 123456789 123456789 ! 2468 123456789 2468 !
+-------------------------------+-------------------------------+-------------------------------+
===> 2nd step: solve it as a normal Sudoku.
SudoRules gives a solution using only bivalue-chains[3] and a single z-chain[3] - which makes it a relatively easy puzzle.
- Code: Select all
(solve-sukaku-grid
+-------------------------------+-------------------------------+-------------------------------+
! 13579 123456789 13579 ! 123456789 8 4 ! 2468 6 13579 !
! 123456789 123456789 123456789 ! 1 123456789 123456789 ! 123456789 123456789 3 !
! 13579 123456789 2468 ! 123456789 123456789 123456789 ! 2468 9 13579 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 2 5 ! 123456789 2468 123456789 ! 3 123456789 123456789 !
! 123456789 7 8 ! 13579 123456789 2468 ! 123456789 123456789 123456789 !
! 4 123456789 3 ! 123456789 13579 5 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 2468 123456789 2468 ! 8 123456789 123456789 ! 13579 123456789 13579 !
! 5 123456789 123456789 ! 123456789 4 9 ! 123456789 123456789 123456789 !
! 2468 9 13579 ! 6 123456789 123456789 ! 2468 123456789 2468 !
+-------------------------------+-------------------------------+-------------------------------+
)
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Using CLIPS 6.32-r801
*** Running on MacBookPro Retina Mid-2012 i7 2.7GHz, 16GB 1600MHz DDR3, MacOS 10.15.7
*** Download from: https://github.com/denis-berthier/CSP-Rules-V2.1
***********************************************************************************************
singles ==> r4c5 = 6, r5c6 = 2, r1c7 = 2, r4c6 = 8, r4c4 = 4
- Code: Select all
Resolution state after Singles:
+-------------------------+-------------------------+-------------------------+
! 1379 135 179 ! 3579 8 4 ! 2 6 157 !
! 26789 4568 24679 ! 1 2579 67 ! 4578 4578 3 !
! 137 134568 246 ! 2357 2357 367 ! 48 9 157 !
+-------------------------+-------------------------+-------------------------+
! 19 2 5 ! 4 6 8 ! 3 17 179 !
! 169 7 8 ! 39 139 2 ! 14569 145 14569 !
! 4 16 3 ! 79 179 5 ! 16789 1278 126789 !
+-------------------------+-------------------------+-------------------------+
! 26 1346 246 ! 8 12357 137 ! 1579 123457 1579 !
! 5 1368 1267 ! 237 4 9 ! 1678 12378 12678 !
! 28 9 17 ! 6 12357 137 ! 48 1234578 248 !
+-------------------------+-------------------------+-------------------------+
203 candidates, 1229 csp-links and 1229 links. Density = 5.99%
whip[1]: c6n1{r9 .} ==> r9c5 ≠ 1, r7c5 ≠ 1
whip[1]: r9n4{c9 .} ==> r7c8 ≠ 4
whip[1]: r7n6{c3 .} ==> r8c3 ≠ 6, r8c2 ≠ 6
whip[1]: r4n7{c9 .} ==> r6c9 ≠ 7, r6c7 ≠ 7, r6c8 ≠ 7
whip[1]: c4n5{r3 .} ==> r3c5 ≠ 5, r2c5 ≠ 5
whip[1]: c1n3{r3 .} ==> r3c2 ≠ 3, r1c2 ≠ 3
whip[1]: c1n7{r3 .} ==> r2c3 ≠ 7, r1c3 ≠ 7
whip[1]: c3n9{r2 .} ==> r2c1 ≠ 9, r1c1 ≠ 9
whip[1]: b3n1{r3c9 .} ==> r8c9 ≠ 1, r4c9 ≠ 1, r5c9 ≠ 1, r6c9 ≠ 1, r7c9 ≠ 1
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 137 15 19 ! 3579 8 4 ! 2 6 157 !
! 2678 4568 2469 ! 1 279 67 ! 4578 4578 3 !
! 137 14568 246 ! 2357 237 367 ! 48 9 157 !
+-------------------------+-------------------------+-------------------------+
! 19 2 5 ! 4 6 8 ! 3 17 79 !
! 169 7 8 ! 39 139 2 ! 14569 145 4569 !
! 4 16 3 ! 79 179 5 ! 1689 128 2689 !
+-------------------------+-------------------------+-------------------------+
! 26 1346 246 ! 8 2357 137 ! 1579 12357 579 !
! 5 138 127 ! 237 4 9 ! 1678 12378 2678 !
! 28 9 17 ! 6 2357 137 ! 48 1234578 248 !
+-------------------------+-------------------------+-------------------------+
naked-pairs-in-a-column: c7{r3 r9}{n4 n8} ==> r8c7 ≠ 8, r6c7 ≠ 8, r5c7 ≠ 4, r2c7 ≠ 8, r2c7 ≠ 4
hidden-pairs-in-a-row: r6{n2 n8}{c8 c9} ==> r6c9 ≠ 9, r6c9 ≠ 6, r6c8 ≠ 1
hidden-pairs-in-a-block: b3{n4 n8}{r2c8 r3c7} ==> r2c8 ≠ 7, r2c8 ≠ 5
finned-x-wing-in-columns: n8{c7 c1}{r9 r3} ==> r3c2 ≠ 8
singles ==> r3c7 = 8, r2c8 = 4, r9c7 = 4, r5c9 = 4, r8c9 = 6
naked-pairs-in-a-row: r9{c1 c9}{n2 n8} ==> r9c8 ≠ 8, r9c8 ≠ 2, r9c5 ≠ 2
biv-chain[3]: r4n1{c8 c1} - b4n9{r4c1 r5c1} - r5n6{c1 c7} ==> r5c7 ≠ 1
biv-chain[3]: c4n5{r3 r1} - r1c2{n5 n1} - b3n1{r1c9 r3c9} ==> r3c9 ≠ 5
biv-chain[3]: r3c9{n1 n7} - r4c9{n7 n9} - r4c1{n9 n1} ==> r3c1 ≠ 1
biv-chain[3]: r3c1{n7 n3} - r1n3{c1 c4} - b2n5{r1c4 r3c4} ==> r3c4 ≠ 7
biv-chain[3]: r2c7{n7 n5} - c9n5{r1 r7} - b9n9{r7c9 r7c7} ==> r7c7 ≠ 7
z-chain[3]: r3c1{n7 n3} - r3c6{n3 n6} - r2c6{n6 .} ==> r3c5 ≠ 7
biv-chain[3]: c4n2{r8 r3} - r3c5{n2 n3} - b5n3{r5c5 r5c4} ==> r8c4 ≠ 3
hidden-pairs-in-a-row: r8{n3 n8}{c2 c8} ==> r8c8 ≠ 7, r8c8 ≠ 2, r8c8 ≠ 1, r8c2 ≠ 1
biv-chain[4]: r4n1{c8 c1} - b4n9{r4c1 r5c1} - r5n6{c1 c7} - b6n5{r5c7 r5c8} ==> r5c8 ≠ 1
singles ==> r5c8 = 5, r9c5 = 5
hidden-pairs-in-a-row: r7{n5 n9}{c7 c9} ==> r7c9 ≠ 7, r7c7 ≠ 1
biv-chain[3]: r5n1{c1 c5} - r5n3{c5 c4} - r1n3{c4 c1} ==> r1c1 ≠ 1
whip[1]: c1n1{r5 .} ==> r6c2 ≠ 1
singles ==> r6c2 = 6, r5c7 = 6
naked-pairs-in-a-block: b1{r1c1 r3c1}{n3 n7} ==> r2c1 ≠ 7
biv-chain[3]: r8c7{n7 n1} - r6c7{n1 n9} - r6c4{n9 n7} ==> r8c4 ≠ 7
naked-single ==> r8c4 = 2
naked-pairs-in-a-block: b7{r8c3 r9c3}{n1 n7} ==> r7c2 ≠ 1
whip[1]: b7n1{r9c3 .} ==> r1c3 ≠ 1
singles ==> r1c3 = 9, r2c5 = 9, r3c5 = 2
biv-chain[3]: r2n7{c6 c7} - r8c7{n7 n1} - r7n1{c8 c6} ==> r7c6 ≠ 7
biv-chain[3]: r6c5{n1 n7} - r7n7{c5 c8} - r4c8{n7 n1} ==> r6c7 ≠ 1
stte