4 years ago i took mathimagics's pile of 3703593 not-all-singles minimal 6x6 sudokus, did all the singles in them to get 542257 different puzzles (this is what mith now calls "singles-expanded forms"), converted about 70% of them to 9x9 sudokus and rated them with skfr, and the results are as above. i tried to get the java installation to work for 1to9only's modified sudokuexplainer for 6x6s, so i could see if the other 30% had any surprises in them, but never got around to it.
i finally got around to rating the whole batch of 542257 singles-expanded forms with sudoku6explainer. it took 3.5 hours
there are no new surprises. there remain only nine SE 8.4 puzzles and no more. this confirms that the SE 8.4 puzzles posted above are the hardest 6x6s available according to SE rating. a lot of new 8.3's popped up (130 of them). a lot of the skfr 7.7's turned into SE 7.8's but this is an already existing bug/feature known to skfr/SE
i suspect that, especially at the high-clue end, a lot of the puzzles will solve identically but not be isomorphic, by means of having multiple ways to fill in the complement of the puzzle in its solution grid - this looks like it's true for all 8 of the 12-clue 8.4's - this is something i briefly pointed out to mith when he was looking for high-clue hardest 9x9 puzzles, but applies to a much greater extent in the 6x6s
here is the complete table by SE rating and clue count
- Code: Select all
clues 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 total
-------------------------------------------------------------------------------------------------------------------
8.4 8 1 9
8.3 6 63 123 35 28 16 8 279
8.2 42 3 45
7.8 13 2 2 1 18
7.7 2 5 14 6 12 5 44
7.6 2 12 25 18 12 2 71
7.5 2 2
7.3 7 34 12 36 4 93
7.2 4 389 3043 6398 5695 3774 2327 1128 434 155 19 23366
7.1 13 1075 10418 19396 16441 12522 7689 4014 1735 880 86 17 74286
7.0 5 72 152 188 143 117 23 700
6.9 2 114 336 241 322 94 28 21 11 2 1171
6.8 1 14 282 1111 1408 1163 874 380 180 58 4 5475
6.7 47 491 1357 1417 1232 1112 579 342 177 20 12 6786
6.6 8 1029 7270 18654 28193 29637 26889 20093 12693 7134 3530 1694 494 194 4 16 157532
6.5 8 20 82 228 424 550 425 282 291 156 82 24 2572
6.2 24 64 105 158 68 90 48 43 600
5.8 1 8 6 12 16 43
5.7 6 73 188 327 565 622 606 494 370 195 119 28 3593
5.6 6 76 474 1016 1799 2158 2417 2525 2355 1318 1283 513 733 114 133 14 6 16940
4.7 2 16 10 28
4.6 4 4 59 117 195 293 361 281 226 135 97 68 20 12 2 27 1901
4.5 94 558 1631 2135 2197 1809 1623 1147 882 362 239 156 32 10 12875
4.4 36 64 365 1051 1391 1583 1362 1068 640 194 124 56 7934
4.2 1 870 7206 18267 24750 24965 21719 16540 10217 6105 3260 1621 548 273 93 2 8 136445
3.8 4 7 19 16 9 2 57
3.6 2 6 4 4 16
3.4 2 74 96 148 109 27 8 10 474
3.2 124 462 527 700 620 481 237 158 40 6 3355
3.0 4 547 817 798 617 324 297 94 62 14 2 4 3580
2.8 25 276 470 468 196 193 91 32 6 2 1759
2.6 20 448 2766 5047 5237 4694 3469 2282 1521 740 256 110 48 26638
2.5 2 98 132 432 647 512 383 126 51 12 2395
2.0 4 409 3613 7112 7971 8991 7251 4905 2784 893 265 72 24 44294
1.7 96 322 679 1176 1632 1691 921 316 48 6881
this brings a somewhat anticlimactic conclusion to the question of what the hardest 6x6 puzzles are, if you're satisfied with using SE as a rating for these
for the manual solvers who like to do these tiny little puzzles for fun, here is a stratified random sample of 10% (rounded up) of the puzzles in each rating in the 7.3-8.3 range
random sample of hard 6x6s: Show 000006000120031500500031302000040000 ED=8.3/8.3/3.4
023400400003004605065040000000002500 ED=8.3/8.3/7.1
020000406000230064064300040015000000 ED=8.3/8.3/2.6
100006056030000060600204301600560000 ED=8.3/8.3/2.6
020006406000000500300020001000040005 ED=8.3/7.1/7.1
000050056001030040600300002504500000 ED=8.3/8.3/2.8
100056056100030000504000000640000002 ED=8.3/8.3/3.4
020050400030210300000021002003630000 ED=8.3/8.3/2.6
100000056100230060004300000005000010 ED=8.3/8.3/2.6
003050050200001000600012310004000100 ED=8.3/8.3/2.8
020050050102030064040300002000500000 ED=8.3/8.3/2.6
000400050032015003000000002301031000 ED=8.3/8.3/6.6
100006050030000004040210000000062040 ED=8.3/8.3/2.6
003400000032000600600003004005510300 ED=8.3/7.2/2.6
003450050032030060605010300020500040 ED=8.3/8.3/8.3
100400006001030045005000000500560020 ED=8.3/8.3/2.8
003400450032000064600200300020500040 ED=8.3/8.3/6.6
100050056030001064600210010020060040 ED=8.3/8.3/8.3
003006006130030000600000002045004200 ED=8.3/8.3/2.6
000450450000010060600000002610000003 ED=8.3/8.3/2.6
120006006120031000500000000040000302 ED=8.3/8.3/3.4
003000450030010360630001000500040010 ED=8.3/8.3/7.1
000006000230200000005100000640040305 ED=8.3/7.2/2.6
000006006130200000004000045620602005 ED=8.3/8.3/2.6
023000400000000060000201310005005310 ED=8.3/8.3/3.4
000450400003000001000340302000060030 ED=8.3/8.3/2.6
000450400032010060300500002000600000 ED=8.3/8.3/4.2
120006056020010600605000000060060304 ED=8.3/8.3/2.6
020406006100035040000003004000000064 ED=8.2/8.2/2.6
020050400200001000640000000560500003 ED=8.2/6.6/6.6
020000406000000605005010300500004003 ED=8.2/6.6/6.6
000050000103200030035000000004040360 ED=8.2/8.2/2.6
120000006001000040000302010500500003 ED=8.2/6.6/6.6
103000056130001500060021002010610000 ED=7.8/7.8/2.6
100056056102210000060021000013001200 ED=7.8/7.8/4.4
020000450030230560605003000000500040 ED=7.7/7.7/2.6
100450450102001000040210010620000001 ED=7.7/7.7/4.4
020050000102015603600015300001000000 ED=7.7/7.7/4.4
100406406130004503000040040000001304 ED=7.7/7.7/4.4
020000006120010360000001500000030500 ED=7.7/6.6/6.6
000006000130201000560021300015000000 ED=7.6/7.1/2.6
000406006032010003000000530260002300 ED=7.6/7.6/7.2
100056056100000000640010000000062041 ED=7.6/7.6/2.6
020050400002200000060200002301030020 ED=7.6/7.6/2.6
100400000030000064060200310600605000 ED=7.6/7.6/7.1
020000406000010000600501300600060040 ED=7.6/7.6/2.6
120056000102031060500000000600610003 ED=7.6/7.6/3.0
000006050130200000560021300015005000 ED=7.6/7.6/3.0
100006006030005000360000040000600024 ED=7.5/7.5/6.6
000450000023001000560010300000042000 ED=7.3/7.2/2.6
100006006100200000030000040020500040 ED=7.3/3.0/2.6
000400000032010000604000002001561000 ED=7.3/7.3/2.6
000450050032010000300020001200600010 ED=7.3/7.3/6.6
023050450000010600300001030200000010 ED=7.3/7.3/6.6
100000406000005043004200040060561000 ED=7.3/7.3/2.6
000450000003230010001300010000642030 ED=7.3/7.3/2.6
100450400002010060600000041000560040 ED=7.3/6.6/3.0
020000406000000600000015342000001020 ED=7.3/7.3/2.6
000450000003200000561300310200002030 ED=7.3/7.3/2.6
edit: the next stage after this, if anyone cares, is to determine how hard the hardest 6x6 pencilmark sudokus can be. for comparison, allowing arbitrary pencilmark grids moves the hardest known 9x9 sudoku from SE 11.9 to the 13+ range using nested dynamic chains, and possibly higher, if the implementation of SE allows for nested dynamic(+) (which i'm not sure if it does or not). for 4x4 sudokus, all the sudokus are doable with naked singles only or with hidden singles only, but the hardest known pencilmark 4x4 is SE 8.3. for the 6x6 ones, my guess is that there'll be something in the low 10's range with nested FC, but would be surprised to see anything higher