Halloween Sudoku

For fans of Killer Sudoku, Samurai Sudoku and other variants

Halloween Sudoku

Postby urhegyi » Fri Oct 16, 2020 5:59 pm

The 2 eyes form 2 blocks containing the digits 1 to 9 only one time. The same goes for the mouth which is also an extra block containing the digits 1 to 9 only once.
I already solved it half with logic and trial and error for the other part because i didn't found the way to start. Any advice?
Attachments
121642142_10158900859554923_2059651658671508700_n.jpg
121642142_10158900859554923_2059651658671508700_n.jpg (12.93 KiB) Viewed 1142 times
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: Halloween Sudoku

Postby SCLT » Fri Oct 16, 2020 6:10 pm

I solved the puzzle and it seemed quite straightforward, so it's difficult to guess where you might be stuck. Could you post the exact point in the puzzle that you are stuck on? It will be easier for us to help then.
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: Halloween Sudoku

Postby urhegyi » Fri Oct 16, 2020 7:03 pm

halloween-part.png
halloween-part.png (15.42 KiB) Viewed 1130 times
SCLT wrote:I solved the puzzle and it seemed quite straightforward, so it's difficult to guess where you might be stuck. Could you post the exact point in the puzzle that you are stuck on? It will be easier for us to help then.

I redid my steps from the notes I took, and actually the second time it's much easier. At this point it seemed already been solved:
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: Halloween Sudoku

Postby Hajime » Fri Oct 16, 2020 7:23 pm

Singles only, most hidden singles, some naked singles, easy but a pretty nice puzzle !
A possible solution path:
Hidden Text: Show
Code: Select all
Grid Step Cell Row Col Value Why
   1   1   1   7   1   3   HS in row      
   1   1   2   3   3   3   HS in row      
   1   1   3   1   4   3   HS in row      
   1   1   4   6   6   3   HS in row      
   1   1   5   1   5   4   HS in col      
   1   1   6   4   9   8   HS in box      
   1   1   7   2   4   8   HS in jigsaw      
   1   1   8   7   3   1   HS in jigsaw      
   1   1   9   6   3   8   HS in jigsaw      
   1   1   10   2   7   1   HS in jigsaw      
   1   2   11   7   2   8   HS in row      
   1   2   12   5   3   4   HS in row      
   1   2   13   4   3   5   HS in row      
   1   2   14   4   5   1   HS in row      
   1   2   15   1   6   1   HS in row      
   1   2   16   9   6   8   HS in row      
   1   2   17   8   8   1   HS in row      
   1   2   18   1   8   8   HS in row      
   1   2   19   2   8   2   HS in col      
   1   2   20   2   6   5   HS in col      
   1   2   21   5   1   1   HS in col      
   1   2   22   8   4   4   HS in col      
   1   2   23   8   9   5   HS in col      
   1   2   24   9   5   7   HS in col      
   1   2   25   7   4   5   HS in box      
   1   2   26   4   4   7   HS in jigsaw      
   1   3   27   3   6   7   HS in row      
   1   3   28   2   1   7   HS in col      
   1   3   29   2   3   9   HS in box      
   1   3   30   6   2   7   HS in box      
   1   3   31   8   1   9   HS in box      
   1   3   32   3   4   9   HS in box      
   1   3   33   5   6   9   HS in box      
   1   3   34   7   5   9   HS in box      
   1   3   35   1   7   7   HS in box      
   1   3   36   1   9   9   HS in box      
   1   3   37   5   8   7   HS in box      
   1   3   38   2   5   6   HS in jigsaw      
   1   3   39   3   8   5   HS in jigsaw      
   1   4   40   1   2   6   Naked Single      
   1   4   41   8   2   2   Naked Single      
   1   4   42   9   3   6   Naked Single      
   1   4   43   6   4   6   Naked Single      
   1   4   44   8   6   6   Naked Single      
   1   4   45   3   7   6   Naked Single      
   1   4   46   9   9   2   Naked Single      
   1   4   47   4   1   6   HS in row      
   1   4   48   5   4   2   HS in row      
   1   4   49   7   6   2   HS in row      
   1   4   50   5   7   5   HS in row      
   1   4   51   7   8   6   HS in row      
   1   4   52   5   9   6   HS in row      
   1   4   53   4   7   2   HS in col      
   1   4   54   4   8   3   HS in col      
   1   4   55   6   1   2   HS in col      
   1   4   56   7   7   4   HS in col      
   1   4   57   9   7   3   HS in col      
   1   4   58   9   8   9   HS in col      
   1   4   59   6   8   4   HS in box      
   1   4   60   6   7   9   HS in box      
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân

Re: Halloween Sudoku

Postby 1to9only » Fri Oct 16, 2020 10:31 pm

I set it up on Hodoku - first color the cells for the eyes and mouth, File -> Modify Givens to set givens, File -> Play Game when ready.
The eyes and mouth regions have to be manually checked for candidates eliminations.

Image

As noted in a previous post, the puzzle solves with singles only, ED=1.5/1.2/1.2.
User avatar
1to9only
 
Posts: 4177
Joined: 04 April 2018

Re: Halloween Sudoku

Postby 1to9only » Mon Oct 19, 2020 9:03 pm

I generated a few of the halloween sudokus to keep busy before halloween day!
Code: Select all
........9..8...4.5.....8..........7.3...82.....7..42.........1...93.....5.....8.. ED=1.5/1.2/1.2
.....7.12.6.....3..24.9......8..1..........5..4...6.2........4.......7.....2..... ED=1.5/1.2/1.2
.........69......2.....5.1.4.3.86.............1....7.......32.....5....3..5...... ED=1.5/1.2/1.2
.9..82...7..6.....2....1............9..1...........8.4..3....2.......18..5......6 ED=1.5/1.5/1.5
...7.......3..5..281...6.5.......37496........................6.....8.35......... ED=2.0/1.2/1.2
9.......3..2...14.........2..........3............9.7..8.195.............2.46..1. ED=3.4/1.2/1.2
..7...........3..7....6.8..1.3.........5.4....4........2.3..75.5.86.............. ED=3.8/1.2/1.2
..4.6..........26...79.....3.........1...784.............61.4.........58.......3. ED=4.2/1.2/1.2
.......9..5..1.42....8.....3..7.1..8..2....5........6....5..28............3...... ED=4.4/1.2/1.2
......2.........6...45...91...6.2..8...1...5...6.87.......2.9...1......3......... ED=4.4/1.2/1.2

[Edit 22/10] Solutions - the ED ratings may be slightly different as I've now added Intersections for this variant!
Hidden Text: Show
Code: Select all
165243789728916435934578162482659371391782546657134298243865917819327654576491823 ED=1.5/1.2/1.2
583467912769125834124398675258741396691832457347956128815673249432589761976214583 ED=1.5/1.2/1.2
578912634691348572234675819453786921782159346916234758167493285849527163325861497 ED=1.5/1.2/1.2
396482715781635942245971368834257691967148253512396874673814529429563187158729436 ED=1.5/1.5/1.5
645782913793145682812396457251869374967453128384271569139527846476918235528634791 ED=2.0/1.2/1.2
915624783872953146346817592697281435431576829258349671783195264164732958529468317 ED=2.8/1.2/1.2
657891234819423567234765891163982475982574316745136982426319758598647123371258649 ED=3.8/1.2/1.2
234561789159478263867923514346852197512397846798146325983615472671234958425789631 ED=4.2/1.2/1.2
671234895958617423234859671365721948412968357897345162149573286586192734723486519 ED=4.4/1.2/1.2
568719234391248567724563891479652318283194756156387429637421985812975643945836172 ED=1.7/1.2/1.2
Last edited by 1to9only on Thu Oct 22, 2020 8:41 am, edited 1 time in total.
User avatar
1to9only
 
Posts: 4177
Joined: 04 April 2018

Re: Halloween Sudoku

Postby urhegyi » Mon Oct 19, 2020 9:49 pm

Nice job creating 10 more Halloween sudokus. I read about windoku last week with 9 possible blocks:
9 5 5 5 9 6 6 6 9
7 1 1 1 7 2 2 2 7
7 1 1 1 7 2 2 2 7
7 1 1 1 7 2 2 2 7
9 5 5 5 9 6 6 6 9
8 3 3 3 8 4 4 4 8
8 3 3 3 8 4 4 4 8
8 3 3 3 8 4 4 4 8
9 5 5 5 9 6 6 6 9
Is there some similarity when defining Halloween sudokus?
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: Halloween Sudoku

Postby Hajime » Tue Oct 20, 2020 8:06 am

Only a very small similarity: the bottom 3 blocks contain the mouth, so there must be exactly 2 digits 1to9 in the white.
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân

Re: Halloween Sudoku

Postby creint » Tue Oct 20, 2020 6:18 pm

urhegyi wrote:Nice job creating 10 more Halloween sudokus. I read about windoku last week with 9 possible blocks:
9 5 5 5 9 6 6 6 9
7 1 1 1 7 2 2 2 7
7 1 1 1 7 2 2 2 7
7 1 1 1 7 2 2 2 7
9 5 5 5 9 6 6 6 9
8 3 3 3 8 4 4 4 8
8 3 3 3 8 4 4 4 8
8 3 3 3 8 4 4 4 8
9 5 5 5 9 6 6 6 9
Is there some similarity when defining Halloween sudokus?


Yes there are (29 easy) hidden constraints but usefulness is always limited.
Can sometimes skip complicated steps in special designed puzzles. Not as useful compared with windoku.
creint
 
Posts: 393
Joined: 20 January 2018

Latin Square + Halloween

Postby 1to9only » Mon Oct 26, 2020 8:44 am

Image

This has no 3x3 blocks - difficulty: easy
Code: Select all
.7.5..4..4.9..5.2..9......1.52...........43..3..........1....45.6.28.......4.8.9. ED=2.0/1.5/1.5

Solution:
Hidden Text: Show
Code: Select all
178523469489635127294357681652749813726194358345812976831976245967281534513468792 ED=2.0/1.5/1.5
User avatar
1to9only
 
Posts: 4177
Joined: 04 April 2018

Re: Halloween Sudoku

Postby Hajime » Mon Oct 23, 2023 12:35 pm

Another Halloween Sudoku, symmetric, with boxes and 4 extra regions, easy, singles only:
Image
Code: Select all
#1/JSB/B4
9..5.2..3.56...41...3...5...............................2...7...37...92.6..7.1..4
.........1111.2222.111.222...11.22..3.......43.3...4.43333.4444.3.3.4.4..........

More difficult ones, also symmetric, with same layout (moderate, hard and extreme):
Code: Select all
#1/JSB/B4
.2.9.8.4.....5.............6.......7.7.4.1.6.1.......4...3.9.....8.4.3...........
.........1111.2222.111.222...11.22..3.......43.3...4.43333.4444.3.3.4.4..........
#1/JSB/B4
9.67.21.4.........7.......9....8......9...8......7....5.......2.........4.82.73.5
.........1111.2222.111.222...11.22..3.......43.3...4.43333.4444.3.3.4.4..........
#1/JSB/B4
....4.....7.1.8.9.............5.4.....17.38..7..9.6..3.1.....7..............7....
.........1111.2222.111.222...11.22..3.......43.3...4.43333.4444.3.3.4.4..........
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân


Return to Sudoku variants