gurth wrote:Emerald Challenge : ... Can it be solved without relying entirely on a computer?
It sure can, quite simple actually! Basic symmetry rules gives:
- Code: Select all
*-----------*
|.7.|1.6|...|
|..4|..2|...|
|6..|.8.|..5|
|---+---+---|
|..9|..1|..3|
|.3.|.5.|.7.|
|7..|9..|1..|
|---+---+---|
|5..|.2.|..4|
|...|8..|6..|
|...|4.9|.3.|
*-----------*
Which easily advances to:
- Code: Select all
*-----------*
|.75|1.6|...|
|..4|5.2|...|
|6..|.8.|..5|
|---+---+---|
|..9|..1|..3|
|.3.|.5.|.7.|
|7..|9..|1..|
|---+---+---|
|5..|.2.|..4|
|...|8.5|6..|
|...|4.9|53.|
*-----------*
Now we have an symetrical UR:
If r46c5=73 => r37c46=37, which would give two symmetrical solutions => r46c5<>37
Advances the puzzle a bit and we get here:
- Code: Select all
*--------------------------------------------------------------------*
|-238 7 5 | 1 9 6 | 2348 248 *28 |
| 1389 189 4 | 5 7 2 | 389 1689 #1689 |
| 6 129 12 | 3 8 4 | 7 129 5 |
|----------------------+----------------------+----------------------|
| 248 24568 9 | 7 46 1 | 248 24568 3 |
| 14 3 16 | 2 5 8 | 49 7 69 |
| 7 24568 268 | 9 46 3 | 1 24568 268 |
|----------------------+----------------------+----------------------|
| 5 189 3 | 6 2 7 | 89 189 4 |
|%1249 1249 127 | 8 3 5 | 6 129 #1279 |
|*28 268 2678 | 4 1 9 | 5 3 -278 |
*--------------------------------------------------------------------*
Simple elimination, r1c9&r9c1=28 (if r1c9=2 => r9c1=8, and the other way around), r1c1=r9c9<>28
Then have a look at the candidates for digit 1. We know that both r2c9 and r8c1 cannot hold digit 1, but there is a strong link on 1 in r28c9 => r8c1<>1. Due to symmetry we may also eliminate 9 from r2c9.
Using one strong link more we can do the same for digit 8:
[r9c1]-8-[r9c3]=8=[r6c3]-8-[r6c9]=8=[r1c9]
=> r9c1<>8
=> r9c1=2 => r1c9=8
Now we got here:
- Code: Select all
*--------------------------------------------------------------------*
| 3 7 5 | 1 9 6 | 24 24 8 |
| 189 89 4 | 5 7 2 | 3 169 16 |
| 6 29 *12 | 3 8 4 | 7 -19 5 |
|----------------------+----------------------+----------------------|
| 48 24568 9 | 7 46 1 | 248 24568 3 |
| 14 3 16 | 2 5 8 | 49 7 69 |
| 7 24568 268 | 9 46 3 | 1 24568 26 |
|----------------------+----------------------+----------------------|
| 5 19 3 | 6 2 7 | 89 #18 4 |
| 49 149 7 | 8 3 5 | 6 #12 *129 |
| 2 68 68 | 4 1 9 | 5 3 7 |
*--------------------------------------------------------------------*
Forcing chain:
either r78c8=1 or r8c9=1 => r1c2<>1 => r3c3=1
in either case r3c8<>1, puzzle solved.
The last move is very similar to the two earlier eliminations, using a grouped link:
[r2c1]-1-[r3c3]=1=[r3c8]-1-[r78c8]=1=[r8c9]
I liked this emerald gurth, have you got any more of them?
RW