in his PM, he wrote wrote:Below is a copy-paste with nested quotes as closer as possible to the original thread from the programmers forum. Some links are broken, some point to this forum and work.
Thanks Mladen.
---
blue Posted: Fri Jan 07, 2011 3:16 pm wrote:This is a follow up to a post in this thread, where I wrote:There are also 137 grids where all 18 2-row and 2-column UA18 are minimal.
I don't know if that list has been published.
In 2005, Red Ed published the complete list of 127 grids where all 36 2-digit UA18 are minimal.
There are 15 grids that appear in both lists.
This is one of them:
- Code: Select all
123456789456789231789123645231564897564897312897231456375618924618942573942375168
These are the 137 grids where all 2-row and 2-column UAs, are (minimal) UA18s.
- Code: Select all
123456789456789231789123645231564897564897312897231456375618924618942573942375168
123456789456789231789123645231564897564897312897231456375942168618375924942618573
123456789456789231789123645231564897564897312978312564395248176617935428842671953
123456789456789231789123645231564897564897312978312564395671428617248953842935176
123456789456789231789123645231564978564897123897231564375942816618375492942618357
123456789456789231789123645231564978564897123897312456348671592672935814915248367
123456789456789231789123645231564978564897123897312456375941862618275394942638517
123456789456789231789123645231564978564978312978231456395617824617842593842395167
123456789456789231789123645231564978564978312978231456395842167617395824842617593
123456789456789231789123645231564978645897312897312456368275194572941863914638527
123456789456789231789123645231564978645897312897312456368941527572638194914275863
123456789456789231789123645231564978645897312978231456367915824592348167814672593
123456789456789231789123645231564978645897312978231456394618527517942863862375194
123456789456789231789123645231645897564978312897312456375294168618537924942861573
123456789456789231789123645231645897564978312897312456375861924618294573942537168
123456789456789231789123645231645897564978312978231456347592168692814573815367924
123456789456789231789123645231645897564978312978231456395862174617394528842517963
123456789456789231789123645231648597564972318897315426375291864618534972942867153
123456789456789231789123645231678594564912378897345126348567912672891453915234867
123456789456789231789123645231897456564231897978645123347518962692374518815962374
123456789456789231789123645231897456564231897978645123347962518692518374815374962
123456789456789231789123645231897564564231978978564312347915826692348157815672493
123456789456789231789123645231897564564312897897645312375961428618274953942538176
123456789456789231789123645231897564645231897897645312374518926518962473962374158
123456789456789231789123645231978456564312897897645312375294168618537924942861573
123456789456789231789123645231978456645231897978564312367815924592347168814692573
123456789456789231789123645231978456645231897978564312394617528517842963862395174
123456789456789231789123645234561897567894312891237456372945168615378924948612573
123456789456789231789123645234561978567894123891237564372945816615378492948612357
123456789456789231789123645234561978568974312971238456392845167615397824847612593
123456789456789231789123645234567918567891423891234567372615894615948372948372156
123456789456789231789123645234567918567891423891234567372948156615372894948615372
123456789456789231789123645234578916568931472971264358345892167697315824812647593
123456789456789231789123645234578916568931472971264358392817564615342897847695123
123456789456789231789123645234597168567831924891264573345972816678315492912648357
123456789456789231789123645234597168567831924891264573372918456615342897948675312
123456789456789231789123645234597816567831492891264357345972168678315924912648573
123456789456789231789123645234597816567831492891264357372918564615342978948675123
123456789456789231789123645234615897567948312891372456345297168678531924912864573
123456789456789231789123645234675918567918423891342567372561894615894372948237156
123456789456789231789123645234675918567918423891342567372894156615237894948561372
123456789456789231789123645234975168567318924891642573345261897678594312912837456
123456789456789231789123645234975168567318924891642573345297816678531492912864357
123456789456789231789123645234975168567318924891642573372594816615837492948261357
123456789456789231789123645235817496817964352964235817392578164578641923641392578
123456789456789231789123645235817964817964523964235178392578416578641392641392857
123456789456789231789123645235964178817235964964817523392641857578392416641578392
123456789456789231789123645235964817817235496964817352392641578578392164641578923
123456789456789231789123645237561894561894372894237156342675918675918423918342567
123456789456789231789123645237561894561894372894237156342918567675342918918675423
123456789456789231789123645237918456561342897894675312342597168675831924918264573
123456789456789231789123645237918456561342897894675312378561924612894573945237168
123456789456789231789123645237945168561378924894612573342561897675894312918237456
123456789456789231789123645237945168561378924894612573378291456612534897945867312
123456789456789231789123645237945168561378924894612573378561492612894357945237816
123456789456789231789123645238514976514697823697238514362845197845971362971362458
123456789456789231789123645238514976514697823697238514362971458845362197971845362
123456789456789231789123645238514976514697823697238514375861492861942357942375168
123456789456789231789123645238514976514697823697238514375942168861375492942861357
123456789456789231789123645238697514514238976697514823375861492861942357942375168
123456789456789231789132546234567918567891423891324657372615894615948372948273165
123456789456789231789132546234675918567918423891243657372561894615894372948327165
123456789456789231789132546237615894561948372894273165342567918675891423918324657
123456789456789231789132546241568973675391824938247165317924658562813497894675312
123456789456789231789231564231897456564312897978645312347168925692573148815924673
123456789456789231789231564231897456645123978978645312367914825592368147814572693
123456789456789231789231564231897645645312978897645312368924157572168493914573826
123456789456789231789231564234867195518943627697512843372695418861374952945128376
123456789456789231789231564234895617518627943697143852375918426862374195941562378
123456789456789231789231564267394815348517926591628347672943158834175692915862473
123456789456789231789312456231564897564897312978231645347925168692148573815673924
123456789456789231789312456231564897564897312978231645395628174617943528842175963
123456789456789231789312456231564978564978312978123564347691825692835147815247693
123456789456789231789312456231564978564978312978123564395841627617295843842637195
123456789456789231789312456231564978645897312897231564368925147572148693914673825
123456789456789231789312456231564978645897312897231564374628195518943627962175843
123456789456789231789312456231567948567948312948123567374891625615274893892635174
123456789456789231789312456231567948567948312948123567395671824672834195814295673
123456789456789231789312456231568974568974312974123568345691827692837145817245693
123456789456789231789312456231568974568974312974123568397841625615297843842635197
123456789456789231789312456231578964578964312964123578347891625615247893892635147
123456789456789231789312456231578964578964312964123578395641827642837195817295643
123456789456789231789312456231597648597648312648123597364971825815264973972835164
123456789456789231789312456231597648597648312648123597375861924862934175914275863
123456789456789231789312456231645978645978312978123645367591824592834167814267593
123456789456789231789312456231645978645978312978123645394861527517294863862537194
123456789456789231789312456231648975648975312975123648364591827592837164817264593
123456789456789231789312456231678945678945312945123678367891524514267893892534167
123456789456789231789312456231678945678945312945123678394561827562837194817294563
123456789456789231789312456231897564564123897978645123347268915692571348815934672
123456789456789231789312456231897564564123897978645123395274618617538942842961375
123456789456789231789312456231897645645123897897645312368571924572934168914268573
123456789456789231789312456231978564564123978978564312347691825692835147815247693
123456789456789231789312456231978645645123978978645312367591824592834167814267593
123456789456789231789312456247168593691573824835924167368247915572691348914835672
123456789456789231789312456247591368691834572835267914368925147572148693914673825
123456789456789231789312456247693518538147692691528347375861924862934175914275863
123456789456789231789312456247693815691825347835147692368571924572934168914268573
123456789456789231789312456247963518538147962961528347395671824672834195814295673
123456789456789231789312456248673915671925348935148672367591824592834167814267593
123456789456789231789312456267593148348671592591824673672935814834167925915248367
123456789456789231789312456274195863538627194961843527395274618617538942842961375
123456789456789231789312456274861395538294617961537842395628174617943528842175963
123456789456789231789312456274963518538174962961528374395841627617295843842637195
123456789456789231789312456275943618638175942941628375394861527517294863862537194
123456789456789231789312456294638175375194862618527394537941628861275943942863517
123456789456789231798213645235894176841627953967135428384962517579341862612578394
123456789456789231798213645249671853675938412831524976362845197587192364914367528
123456789456789231798213645271364958364895127985172364512647893647938512839521476
123456789457289163689173452231597846765834291894621537378915624516342978942768315
123456789457289163689173452234968517516734928978512634365897241741325896892641375
123456789457289163689173452235741896816392574974568231392817645568924317741635928
123456789457289163689173452235964817816735924974812635392641578568397241741528396
123456789457289163689173452238514697564397821791628345376945218815762934942831576
123456789457289163689173452241968537365724918978315246534897621716532894892641375
123456789457289163689173452245968317316745928978312645564897231731524896892631574
123456789457289163689173452294618375365794821718532694536947218871325946942861537
123456789457289163689713254235967841716348925894521376362895417578134692941672538
123456789457289163689713254261374895395861427874592631538127946746938512912645378
123456789457289163689713254278341695316925478945867312564192837792638541831574926
123456789457289163698137524249875631536921478871364952364592817712648395985713246
123456789457289163698317254235891476741632895986574312379145628564728931812963547
123456789457289163698317254239168547765924318841735692374691825512843976986572431
123456789457289163698317254245891376781632495936574812379145628564728931812963547
123456789457289163698317254281574396735692418946831572369725841512948637874163925
123456789457289163698317254284563971539174628716928435365791842841632597972845316
123456789457289163698317254284691375539872416716534892365748921841925637972163548
123456789457289163869713245231875496648392517795164328386521974572948631914637852
123456789457289163869713245231964578594837621786521394378142956642395817915678432
123456789457289163869713245298361574315874692674592831536927418742138956981645327
123456789457289163896317245231645978745892631968731524379124856582963417614578392
123456789457289163896317245285693471641875932739142658312564897574928316968731524
123456789457289631869713245236594817578162394914378526345927168691835472782641953
123456789457289631896317245249635817368172594715948326531864972682791453974523168
123456789457289631896317245249731568635892174781645392312974856574168923968523417
123456789457289631896317245285731964641892573739645812312578496574963128968124357
123456789457289631968731245241573896639812457785964123374625918596148372812397564
These are the 15 grids appear in both lists.
- Code: Select all
123456789456789231789123645231564897564897312897231456375618924618942573942375168
123456789456789231789123645231564897564897312897231456375942168618375924942618573
123456789456789231789123645231564897564897312978312564395248176617935428842671953
123456789456789231789123645231564897564897312978312564395671428617248953842935176
123456789456789231789123645231564978564897123897231564375942816618375492942618357
123456789456789231789123645231564978645897312897312456368275194572941863914638527
123456789456789231789123645231564978645897312897312456368941527572638194914275863
123456789456789231789123645231645897564978312897312456375294168618537924942861573
123456789456789231789123645231645897564978312897312456375861924618294573942537168
123456789456789231789123645231897456564231897978645123347518962692374518815962374
123456789456789231789123645231897456564231897978645123347962518692518374815374962
123456789456789231789123645231978456564312897897645312375294168618537924942861573
123456789456789231789123645234615897567948312891372456345297168678531924912864573
123456789456789231789123645234975168567318924891642573345261897678594312912837456
123456789456789231789123645237945168561378924894612573378561492612894357945237816
The grids are in minlex form.
In the two big lists, most of the grids have (non-trivial) automorphisms.
[ 78 from the list of 127, and 123 from the list of 137 ]
In the intersection, every grid has automorphisms.
dobrichev Posted: Sat Jan 08, 2011 8:55 pm wrote:Good job, blue.
It would be interesting to compare the estimated number of puzzles in these 15 monster grids to the average number of puzzles in a random grid.
On the one hand, intuitively the automorphism trends to lower puzzle count. On other hand, the low number of short-sized UA trends to higher puzzle count.
JPF Posted: Mon Jan 10, 2011 6:27 pm wrote:dobrichev wrote:It would be interesting to compare the estimated number of puzzles in these 15 monster grids to the average number of puzzles in a random grid.
On the one hand, intuitively the automorphism trends to lower puzzle count. On other hand, the low number of short-sized UA trends to higher puzzle count.
In this posting, Red Ed proposed a way to estimate the number N of valid puzzles in a solution grid.
This number N is such that : N = P * 2^81
P is estimated by simulation.
For all the 6.67*10^21 grids, the average value of P is 0.36
Here are the estimated value of P for the 15 "monster grids" :
- Code: Select all
123456789456789231789123645231564897564897312897231456375618924618942573942375168 0.684
123456789456789231789123645231564897564897312897231456375942168618375924942618573 0.686
123456789456789231789123645231564897564897312978312564395248176617935428842671953 0.664
123456789456789231789123645231564897564897312978312564395671428617248953842935176 0.666
123456789456789231789123645231564978564897123897231564375942816618375492942618357 0.686
123456789456789231789123645231564978645897312897312456368275194572941863914638527 0.668
123456789456789231789123645231564978645897312897312456368941527572638194914275863 0.667
123456789456789231789123645231645897564978312897312456375294168618537924942861573 0.685
123456789456789231789123645231645897564978312897312456375861924618294573942537168 0.685
123456789456789231789123645231897456564231897978645123347518962692374518815962374 0.667
123456789456789231789123645231897456564231897978645123347962518692518374815374962 0.666
123456789456789231789123645231978456564312897897645312375294168618537924942861573 0.686
123456789456789231789123645234615897567948312891372456345297168678531924912864573 0.704
123456789456789231789123645234975168567318924891642573345261897678594312912837456 0.704
123456789456789231789123645237945168561378924894612573378561492612894357945237816 0.694
JPF
dobrichev Posted: Tue Jan 11, 2011 8:44 am wrote:Average of 0.36 means 36% of all possible combinations of givens/non-givens result in a single-solution, not necessarily minimal puzzle, OK?
Definitely the leak of short-sized UA dominates.
Grids with more valid (non-minimal) puzzles must have slightly smaller average number of clues in their minimal puzzles. Are there some estimations?
What about these 4 grids having only 3 U4 + U6?
- Code: Select all
123456789456789132789213645275941368638527914941638257394175826517862493862394571
123456789456789231789231564234968175867125493915374826348617952592843617671592348
123456789456789231789231564218593647347628195695174823531962478864317952972845316
123456789456789231798213645239174856574628913681395427367841592815962374942537168
MD
coloin Posted: Tue Jan 11, 2011 9:50 pm wrote:dobrichev wrote:Definitely the leak of short-sized UA dominates.
This is the probability that an unavoidable set is unhit - the mcn will be relevant...... and most of the puzzles will be non-minimal - as you state.
i think there are better ways to estimate the number of minimal puzzles [eleven estimated that there were x10 more minimal puzzles in the SFB grid than the MC grid ] [SFB grid is the only one of Red Ed's 127 "Vipers" which has a 17-puzzle]
C
JPF Posted: Wed Jan 12, 2011 7:06 pm wrote:dobrichev wrote:Average of 0.36 means 36% of all possible combinations of givens/non-givens result in a single-solution, not necessarily minimal puzzle, OK?
Yes.you wrote:What about these 4 grids having only 3 U4 + U6?
- Code: Select all
123456789456789132789213645275941368638527914941638257394175826517862493862394571 0.719
123456789456789231789231564234968175867125493915374826348617952592843617671592348 0.721
123456789456789231789231564218593647347628195695174823531962478864317952972845316 0.690
123456789456789231798213645239174856574628913681395427367841592815962374942537168 0.658
JPF
dobrichev Posted: Wed Jan 12, 2011 8:13 pm wrote:Thank you.
The second one has none U4 and the following U6
- Code: Select all
{31,32,51,52,91,92}
{34,36,54,56,94,96}
{52,54,59,62,64,69}
Note that only the first 2 are disjoint, the third intersects first two at r5c2 and r5c4.