Another difficult puzzle with FM type looptarx0075 from
HERE(pointed out by ttt)
FM first loop summary . The first FM loop had 2 central-box strong cell-sets, surrounded by 3 identical layers, one of the layers was anti-symmetric wrt the other two. The anti-symmetry was required (for that logical design) to cause the elimination. Making all 3 layers symetrical prevented the eliminations.
This puzzle's initial loop is similar (same family) but larger with more complex symmetry. It has 4 layers and only the bottom 3 are the same. Among the bottom 3 layers there are 2 r 3 different symmetries, reflecting the symmetry of the puzzle. The top layer, layer 4, also has a broken symmetry in the puzzle.
Studying the symmetry of the assigned cells could help a solver find such loops, since they have the same symmetry
So far there are two styles, first type:
Layer 4 diff. 3 row sets
Layer 6 same 2 rows, 1 column, 1 box -normal-
Layer 7 same 2 rows, 1 column, 1 box -rotation-
Layer 9 same 2 rows, 1 column, 1 box -reflection-
Second type:
Layer 4 diff. 3 row sets
Layer 6 same 2 rows, 2 column -normal-
Layer 7 same 2 rows, 2 column -normal-
Layer 9 same 2 rows, 2 column -reflection-
The common theme seems to be large, symmetrical, layered, loopish structures that eliminate their candidates by rank 0 linksets (cover sets), like continuous nice loops. Not all linksets need be rank 0. The other property is they only appear in the initial part of the solution path.
Column/Box type loop:
- Code: Select all
+-----------------------------------------------------------------------------+
| 1238 123478 124(7) | 2479 234579 4579 | 3459 12345 6 |
| 23(6) 23(47) 5 | 2(4679) 23(4679 1 | 8 23(4) 23(9) |
| 1236 9 1246 | 246 23456 8 | 345 7 1235 |
+-----------------------------------------------------------------------------+
| 159(6) 157 1(679) | 8 (4679) 2 | 345(679 13456 135(79) |
| 589(6) 578 3 | 679(4) 1 679(4) | 2 568(4) 58(79) |
| 4 1278 12(679) | 5 (679) 3 | (679) 168 18(79) |
+-----------------------------------------------------------------------------+
| 1235 6 124 | 1247 24578 457 | 357 9 23578 |
| 25(9) 25(4) 8 | 3 25(4679 5(4679) | 1 25(6) 25(7) |
| 7 1235 12(9) | 1269 25689 569 | 35(6) 23568 4 |
+-----------------------------------------------------------------------------+
Set Logic Elimination, column box type:
- Code: Select all
RABX 58 Nodes, Raw Rank = 5 (linksets - sets)
17 Sets = {4679r2 4r5 4679r8 79c3 6c7 46n5 6b4 79b6}
22 Links = {679r4 679r6 6c1 4c2 4679c5 4c8 79c9 2n4 8n6 7b1 4b5 39b7 6b9}
--> (2n4) => r2c4<>2, (8n6) => r8c6<>5
Thumbs to images: left: 2D grid images (2 loops), right 3D jiggle pic.
(the right 3D image is meant to jiggle to give a sense of depth)
Logic Diagram Column/Row type loop:
- Code: Select all
2n4 8n6 4c2 4c5 4c8 4b5 6c5 6b1 6r6 6r4 6b9 7c5 7b9 7r4 7r6 7b1 9c5 9b7 9r4 9r6 9b3
6R8: 686======================685=================688
| | |
6R2: 624===|=======================625==621 |
| | | | |
6C3: | | | 633==663==643 |
| | | | | |
6C7: | | | 667==647==697
4R2: 424===|===422==425==428 | | |
| | | | | | | |
4R8: | 486==482==485 | | | |
4R5: | | | 458==454 | | |
| | | 456 | | |
6N5: | | | | 665E======665E==|========765F===========765F======965G===========965G
| | | | | | | | | |
4N5: | | 445A======445A=645B===========645B======745C======745C==|========945D======945D |
| | | | | | | |
7C7: | | | 777==747==767 | | |
| | | | | | | | |
7C3: | | | | 743==763==713 | | |
| | | | | | | |
7R8: | 786===============================================785==789 | | | |
| | | | | | |
7R2: 724===|================================================725=================722 | | |
9C3: | | | 993==943==963
| | | | | |
9C7: | | | | 947==967==917
| | | | |
9R8: | 986========================================================================985==981 |
| | |
9R2: 924=============================================================================925=================929
Logic Diagram Column/Box type loop:
- Code: Select all
4c8 4b5 4c5 4c2 8n6 6b9 6r4 6r6 6c1 6c5 7c5 7c9 7r4 7r6 7b1 9c5 9b7 9r4 9r6 9c9 2n4
4R2: 428=======425==422==================================================================================424
| | | |
4R5: 458==454 | | |
456 | | |
4R8: | 485==482==486 |
| | | |
6R8: | | 686==688=================685 |
| | | | | |
6C7: | | | 697==647==667 | |
| | | | | | |
6B4: | | | 641A=663==641A | |
| | | 643 | 651 | |
| | | | | | | |
6R2: | | | | | 621==625====================================================624
| | | | | | |
6N5: | | | | 665H======665H=765I===========765I======965J===========965J |
| | | | | | | | | |
4N5: 445B=445B=======|========645C===========645C=745D======745D==|========945E======945E | |
| | | | | | | |
7R8: 786===========================785==789 | | | | | |
7C3: | | | 743==763==713 | | | |
| | | | | | | | | |
7B6: | | 749F=749F=769K | | | | |
| | 759K 747 767 | | | | |
| | 769 | | | | |
7R2: | 725=================722===|=========|====|========724
| | | | |
9R8: 986====================================================985==981 | | |
| | | | |
9C3: | 993==943==963 |
| | | |
9B6: | 949G=969L=949G |
| 947 967 959L |
| 969 |
| | |
9R2: 925=================929==924
Notes 1) A, B, C indicate candidate in multiple cover sets
2) Vertical adjoining candidates indicate box/line link (hinge)
.