Hello,   
Version A3 of sudoku generator at  
http://sudokugeant.cabanova.com  contains new functions, including :
 an ‘upgrader’ to increase grid difficulty by removing excess cells : 
- Code: Select all
   initial - level 3     upgraded to level 6    upgraded to level 20
  . 7 3 . 5 . 6 1 .      . 7 3 . . . 6 1 .      . 7 3 . . . . 1 . 
  5 . . . . . . . 9      5 . . . . . . . 9      5 . . . . . . . 9 
  9 . 2 4 . 6 5 . 7      . . 2 4 . 6 5 . .      . . 2 4 . 6 5 . . 
  . . 7 3 . 5 9 . .      . . 7 3 . 5 9 . .      . . 7 3 . 5 9 . . 
  6 . . . . . . . 3      6 . . . . . . . 3      6 . . . . . . . 3 
  . . 9 7 . 4 1 . .      . . . 7 . 4 . . .      . . . 7 . 4 . . . 
  7 . 8 5 . 9 2 . 1      . . 8 5 . 9 2 . .      . . 8 5 . 9 2 . . 
  2 . . . . . . . 5      2 . . . . . . . 5      2 . . . . . . . . 
  . 9 5 . 7 . 8 6 .      . 9 5 . 7 . 8 6 .      . 9 5 . 7 . . . .
 and a ‘transformer’ of symmetric grids to generate equivalent grids by keeping symmetry : 
- Code: Select all
      initial                                 transformed sudokus
3 . . 6 1 8 . . 5      . . 4 9 2 8 3 . .      . 5 . . . . . 1 .      2 . . 9 . 6 . . 5 
. . 9 . . . 7 . .      6 . . . . . . . 1      4 . . . 6 . . . 2      . . 4 . 1 . 9 . . 
. 6 . . . . . 8 .      . 9 . . . . . 8 .      . . 1 9 . 2 4 . .      . 9 . . . . . 3 . 
5 . . 1 . 7 . . 3      . . 3 6 . 2 4 . .      . . 4 5 . 9 8 . .      3 . . 7 . 4 . . 9 
. 4 . . . . . 1 .      . 2 . . . . . 5 .      . . 6 . . . 9 . .      5 . . . . . . . 4 
6 . . 8 . 3 . . 4      . . 5 3 . 9 8 . .      . . 7 6 . 4 3 . .      8 . . 5 . 2 . . 7 
. 1 . . . . . 4 .      . 5 . . . . . 2 .      . . 9 1 . 7 5 . .      . 6 . . . . . 2 . 
. . 6 . . . 5 . .      4 . . . . . . . 8      7 . . . 2 . . . 6      . . 1 . 4 . 7 . . 
7 . . 9 3 2 . . 8      . . 9 7 3 1 6 . .      . 3 . . . . . 7 .      7 . . 1 . 5 . . 6
transformer for 16x16 sudokus :
- Code: Select all
  .  .  .  .  1 10  .  .  .  . 16  4  .  .  .  .          .  . 16  2  .  .  .  .  .  .  .  .  5  1  .  .          .  . 10  2  6 13 12  .  .  1  8  5 11  4  .  . 
 3  .  .  .  .  7 14  .  . 11 15  .  .  .  .  4          . 14  4  .  .  .  . 11 13  .  .  .  .  8  6  .          .  3 14  5  1 15  .  .  .  . 10  4 16  9 13  . 
10  4  .  .  .  . 11  6  3  5  .  .  .  .  8 14          9  6  .  .  .  .  1 14 16  8  .  .  .  . 11  3          9  4 12 11 10  .  .  .  .  .  . 13  1  6  8  5 
 7 15  1  .  .  .  .  9 14  .  .  .  . 11  3  6          5  .  .  .  .  8 12 16  1  3  4  .  .  .  . 13          7  1 13  8  .  .  .  .  .  .  .  .  2 12 15 10 
16  8  5 14  .  .  .  .  .  .  .  . 10  4  2  3          .  .  .  . 15 10  2 13  5  6  7 16  .  .  .  .          5 12  8  .  .  .  . 10  3  .  .  .  . 15 11  6 
 1 12  3 10 14  .  .  .  .  .  . 13  8  5  6 15          .  .  . 15  1 11  3  5  4 14  8 13  6  .  .  .          1 16  .  .  .  .  6 13  9 15  .  .  .  .  3 12 
 .  6 13 15  3  2  .  .  .  .  5 16 11  9  1  .          .  . 13  3 12  6 14  .  .  9 15  2  1  7  .  .          3  .  .  .  .  7  8  .  .  4 11  .  .  .  . 14 
 .  .  9 11  8 15  6  .  .  4 10  3 14 13  .  .          . 10  6 14 16  7  .  .  .  . 11  1 15  5 13  .          .  .  .  .  9  3  .  .  .  . 12  8  .  .  .  . 
 .  .  8  1  7  3 12  .  . 15  9 10  4 14  .  .          . 11  5  7  8  4  .  .  .  .  9  3 12 16  1  .          .  .  .  .  8 12  .  .  .  . 13 16  .  .  .  . 
 . 10 14  4  5  6  .  .  .  .  3  7  2 16  9  .          .  .  9  4  2 14 16  .  . 15 10  7 11 13  .  .         15  .  .  .  . 11  7  .  .  9  4  .  .  .  .  1 
13  9  7  3  4  .  .  .  .  .  .  5 12 15 11  8          .  .  . 16 11 12  5  7 14  4  1  8  9  .  .  .         13 11  .  .  .  .  1  2 10  7  .  .  .  . 12  9 
 5  2 15 16  .  .  .  .  .  .  .  .  6  3  7 10          .  .  .  .  3  1 13  9  6 11 16  5  .  .  .  .         12  2  4  .  .  .  . 15  8  .  .  .  . 11  6 13 
 8 13 10  .  .  .  . 14  2  .  .  .  .  6 16  9         15  .  .  .  . 13  8 12  7  1  5  .  .  .  .  9          8  7  5 13  .  .  .  .  .  .  .  .  3 14 16 15 
14  1  .  .  .  .  5  3 10 13  .  .  .  .  4 11         14 13  .  .  .  . 15  1 11  2  .  .  .  . 12 16          4  9 11 15  7  .  .  .  .  .  .  3 12  1  2  8 
15  .  .  .  .  4 13  .  .  9 11  .  .  .  . 12          .  4  8  .  .  .  . 10 15  .  .  .  .  6  5  .          . 10  3 16 12  5  .  .  .  . 15  2  6  7  9  . 
 .  .  .  .  6  9  .  .  .  .  1 14  .  .  .  .          .  .  1  5  .  .  .  .  .  .  .  . 14 15  .  .          .  .  1 12  3  8 15  .  . 14  7  9 13  5  .  .
The generator is developed with EXCEL and applies to sudokus and X-sudokus size 4, 6, classic 9, 12, 16, 25, 36. 
A solver is also available and solves all sudokus and X-sudokus size 9 (that I have found up to now).
The solver contains import/export functions with different formats. For instance :
- Code: Select all
 
...5.........98.6..834.2...9.....3......2.6....7.6.1.251...9.....6.1.42.3.......1
 . . . 5 . . . . .     -------------------------      !-------!-------!-------!
 . . . . 9 8 . 6 .     | . . . | 5 . . | . . . |      ! . . . ! 5 . . ! . . . !
 . 8 3 4 . 2 . . .     | . . . | . 9 8 | . 6 . |      ! . . . ! . 9 8 ! . 6 . !
 9 . . . . . 3 . .     | . 8 3 | 4 . 2 | . . . |      ! . 8 3 ! 4 . 2 ! . . . !
 . . . . 2 . 6 . .     |-------+-------+-------|      !-------!-------!-------!
 . . 7 . 6 . 1 . 2     | 9 . . | . . . | 3 . . |      ! 9 . . ! . . . ! 3 . . !
 5 1 . . . 9 . . .     | . . . | . 2 . | 6 . . |      ! . . . ! . 2 . ! 6 . . !
 . . 6 . 1 . 4 2 .     | . . 7 | . 6 . | 1 . 2 |      ! . . 7 ! . 6 . ! 1 . 2 !
 3 . . . . . . . 1     |-------+-------+-------|      !-------!-------!-------!
                       | 5 1 . | . . 9 | . . . |      ! 5 1 . ! . . 9 ! . . . !
                       | . . 6 | . 1 . | 4 2 . |      ! . . 6 ! . 1 . ! 4 2 . !
                       | 3 . . | . . . | . . 1 |      ! 3 . . ! . . . ! . . 1 !
                       -------------------------      !-------!-------!-------!
phil