yzfwsf wrote:Hi denis_berthier:
Can you test this puzzle?My need to use large memory mode.Can you test this puzzle? My solver needs to use large memory mode. Means the total nodes are more than 20000.
- Code: Select all
.6.7..3.......5..98...3..1..3.8..4....4..1..79..5...2..4...72..2..9.......8.5..6.
Not sure what you want me to test. Here are the whip and g-whip solutions (no other rules activated), starting form the resolution state after Singles and whips[1]:
- Code: Select all
+-------------------+-------------------+-------------------+
! 145 6 1259 ! 7 12489 2489 ! 3 458 2458 !
! 1347 127 1237 ! 1246 12468 5 ! 678 478 9 !
! 8 2579 2579 ! 246 3 2469 ! 567 1 2456 !
+-------------------+-------------------+-------------------+
! 1567 3 12567 ! 8 2679 269 ! 4 59 156 !
! 56 258 4 ! 236 269 1 ! 5689 3589 7 !
! 9 178 167 ! 5 467 346 ! 168 2 1368 !
+-------------------+-------------------+-------------------+
! 1356 4 13569 ! 136 168 7 ! 2 3589 1358 !
! 2 157 13567 ! 9 1468 3468 ! 1578 34578 13458 !
! 137 179 8 ! 1234 5 234 ! 179 6 134 !
+-------------------+-------------------+-------------------+
202 candidates.
Part common to the two resolution paths:- Code: Select all
whip[8]: r3n4{c6 c9} - c4n4{r3 r9} - r9n2{c4 c6} - c6n4{r9 r6} - r6n3{c6 c9} - c9n6{r6 r4} - r4c6{n6 n9} - b2n9{r1c6 .} ==> r1c5≠4
whip[9]: c1n4{r1 r2} - c8n4{r2 r8} - r9n4{c9 c4} - c5n4{r8 r6} - c5n7{r6 r4} - c1n7{r4 r9} - c1n3{r9 r7} - c8n3{r7 r5} - c4n3{r5 .} ==> r1c6≠4
whip[10]: r3n4{c6 c9} - c8n4{r2 r8} - c8n7{r8 r2} - r2n8{c8 c7} - r1c8{n8 n5} - r4c8{n5 n9} - c7n9{r5 r9} - c2n9{r9 r3} - r3n7{c2 c3} - r3n5{c3 .} ==> r2c5≠4
whip[10]: c1n4{r1 r2} - c8n4{r2 r8} - c5n4{r8 r6} - c5n7{r6 r4} - c1n7{r4 r9} - c1n3{r9 r7} - c8n3{r7 r5} - c4n3{r5 r9} - r9n4{c4 c6} - r9n2{c6 .} ==> r1c9≠4
whip[11]: c8n4{r2 r8} - c5n4{r8 r6} - c6n4{r6 r9} - r9n2{c6 c4} - r3c4{n2 n6} - r5c4{n6 n3} - b8n3{r7c4 r8c6} - c6n8{r8 r1} - r1c8{n8 n5} - r3c7{n5 n7} - b9n7{r8c7 .} ==> r3c9≠4
whip[1]: c9n4{r9 .} ==> r8c8≠4
whip[1]: r3n4{c6 .} ==> r2c4≠4
whip[11]: r4c8{n5 n9} - c7n9{r5 r9} - r7n9{c8 c3} - r7n5{c3 c1} - b7n6{r7c1 r8c3} - b7n3{r8c3 r9c1} - r9n7{c1 c2} - r8n7{c3 c7} - r3n7{c7 c3} - r6c3{n7 n1} - c7n1{r6 .} ==> r8c8≠5
whip[12]: c1n3{r9 r2} - r2n4{c1 c8} - c8n7{r2 r8} - c8n3{r8 r5} - b5n3{r5c4 r6c6} - r8n3{c6 c9} - c9n4{r8 r9} - c4n4{r9 r3} - c6n4{r3 r8} - c6n8{r8 r1} - c8n8{r1 r7} - r7n9{c8 .} ==> r7c3≠3
1) Whip only solution: - Code: Select all
whip[15]: c8n7{r8 r2} - c1n7{r2 r4} - r6n7{c3 c5} - r6n4{c5 c6} - b2n4{r3c6 r3c4} - b8n4{r9c4 r8c5} - r8n6{c5 c6} - c6n3{r8 r9} - b7n3{r9c1 r7c1} - c1n6{r7 r5} - c3n6{r4 r7} - r7n9{c3 c8} - r4c8{n9 n5} - r5n5{c8 c2} - b7n5{r8c2 .} ==> r8c3≠7
whip[15]: r6n3{c9 c6} - r8n3{c6 c3} - c1n3{r9 r2} - r2n4{c1 c8} - c8n7{r2 r8} - c8n3{r8 r5} - c4n3{r5 r9} - r9n2{c4 c6} - r9n4{c6 c9} - c4n4{r9 r3} - c6n4{r3 r8} - c6n8{r8 r1} - c8n8{r1 r7} - r8n8{c9 c5} - r8n6{c5 .} ==> r7c9≠3
whip[16]: b9n9{r9c7 r7c8} - b7n9{r7c3 r9c2} - b7n7{r9c2 r8c2} - r3n7{c2 c3} - r6n7{c3 c5} - r6n4{c5 c6} - b5n3{r6c6 r5c4} - r7n3{c4 c1} - r9c1{n3 n1} - r2c1{n1 n4} - r1c1{n4 n5} - r3c2{n5 n2} - r5n2{c2 c5} - r2n2{c5 c4} - r9c4{n2 n4} - r3n4{c4 .} ==> r9c7≠7
whip[1]: r9n7{c2 .} ==> r8c2≠7
whip[14]: r1n9{c6 c3} - r7n9{c3 c8} - r4n9{c8 c5} - r5n9{c5 c7} - r9n9{c7 c2} - b7n7{r9c2 r9c1} - r4n7{c1 c3} - b4n2{r4c3 r5c2} - r5n8{c2 c8} - c8n3{r5 r8} - r8n7{c8 c7} - c7n5{r8 r3} - c2n5{r3 r8} - c3n5{r7 .} ==> r3c6≠9
whip[1]: r3n9{c3 .} ==> r1c3≠9
whip[6]: r1n1{c3 c5} - r1n9{c5 c6} - c6n8{r1 r8} - r7c5{n8 n6} - b7n6{r7c1 r8c3} - c3n3{r8 .} ==> r2c3≠1
whip[10]: c2n9{r3 r9} - c7n9{r9 r5} - c8n9{r5 r7} - c3n9{r7 r3} - r3n7{c3 c7} - r8n7{c7 c8} - c8n3{r8 r5} - r5n8{c8 c2} - c2n5{r5 r8} - c7n5{r8 .} ==> r3c2≠2
whip[11]: r1n1{c3 c5} - r1n9{c5 c6} - c6n8{r1 r8} - r7c5{n8 n6} - b7n6{r7c1 r8c3} - r8c5{n6 n4} - r6n4{c5 c6} - r6n3{c6 c9} - r8n3{c9 c8} - c8n7{r8 r2} - r2n4{c8 .} ==> r2c1≠1
whip[11]: c2n2{r2 r5} - c5n2{r5 r4} - c5n7{r4 r6} - r6n4{c5 c6} - r3c6{n4 n6} - r4c6{n6 n9} - r5c5{n9 n6} - b8n6{r7c5 r7c4} - c1n6{r7 r4} - c9n6{r4 r6} - r6n3{c9 .} ==> r2c4≠2
whip[5]: r9n2{c4 c6} - r9n4{c6 c9} - c4n4{r9 r3} - r3c6{n4 n6} - r2c4{n6 .} ==> r9c4≠1
whip[7]: r1n1{c3 c5} - r1n9{c5 c6} - b2n8{r1c6 r2c5} - r7c5{n8 n6} - b7n6{r7c1 r8c3} - c3n3{r8 r2} - r2n2{c3 .} ==> r2c2≠1
whip[1]: r2n1{c5 .} ==> r1c5≠1
whip[7]: b8n1{r7c5 r8c5} - r8c2{n1 n5} - b9n5{r8c7 r7c8} - r7n8{c8 c5} - b2n8{r1c5 r1c6} - c6n9{r1 r4} - r4c8{n9 .} ==> r7c9≠1
whip[7]: c4n4{r9 r3} - c4n2{r3 r5} - c2n2{r5 r2} - c5n2{r2 r1} - r3c6{n2 n6} - r4c6{n6 n9} - r1n9{c6 .} ==> r9c4≠3
whip[4]: b9n4{r8c9 r9c9} - r9c4{n4 n2} - r9c6{n2 n3} - r6n3{c6 .} ==> r8c9≠3
whip[7]: c6n8{r8 r1} - c9n8{r1 r6} - r6n3{c9 c6} - r8n3{c6 c3} - r2n3{c3 c1} - r2n4{c1 c8} - c8n7{r2 .} ==> r8c8≠8
whip[8]: c6n8{r8 r1} - c9n8{r1 r6} - r6n3{c9 c6} - r5n3{c4 c8} - c8n8{r5 r2} - r2n4{c8 c1} - r2n3{c1 c3} - r8n3{c3 .} ==> r8c7≠8
whip[6]: b8n1{r7c5 r8c5} - r8c2{n1 n5} - r8c7{n5 n7} - r8c8{n7 n3} - r5n3{c8 c4} - r7n3{c4 .} ==> r7c1≠1
whip[8]: r2c2{n2 n7} - r2c3{n7 n3} - r2n2{c3 c5} - r4n2{c5 c6} - c6n9{r4 r1} - c6n8{r1 r8} - r8n3{c6 c8} - c8n7{r8 .} ==> r3c3≠2
whip[5]: b4n2{r4c3 r5c2} - r2c2{n2 n7} - r3c3{n7 n9} - r7n9{c3 c8} - r4c8{n9 .} ==> r4c3≠5
whip[8]: r2c2{n2 n7} - r2c3{n7 n3} - b1n2{r2c3 r1c3} - r4n2{c3 c6} - c6n9{r4 r1} - c6n8{r1 r8} - r8n3{c6 c8} - c8n7{r8 .} ==> r2c5≠2
whip[1]: r2n2{c3 .} ==> r1c3≠2
whip[4]: r1n1{c3 c1} - c1n4{r1 r2} - r2n3{c1 c3} - c3n2{r2 .} ==> r4c3≠1
whip[7]: r4n1{c9 c1} - r1n1{c1 c3} - b7n1{r7c3 r9c2} - r8c2{n1 n5} - c3n5{r7 r3} - c7n5{r3 r5} - c1n5{r5 .} ==> r8c9≠1
whip[8]: r4n5{c9 c1} - r5c1{n5 n6} - r7c1{n6 n3} - r2n3{c1 c3} - c3n2{r2 r4} - r5c2{n2 n8} - r5c7{n8 n9} - r4c8{n9 .} ==> r5c8≠5
whip[8]: r7n9{c3 c8} - r9c7{n9 n1} - c2n1{r9 r6} - c2n8{r6 r5} - r5c8{n8 n3} - r8c8{n3 n7} - r8c7{n7 n5} - r8c2{n5 .} ==> r7c3≠1
whip[1]: r7n1{c5 .} ==> r8c5≠1
whip[9]: c2n1{r9 r6} - c7n1{r6 r9} - b9n9{r9c7 r7c8} - b7n9{r7c3 r9c2} - r9n7{c2 c1} - b7n3{r9c1 r7c1} - c4n3{r7 r5} - r5c8{n3 n8} - c2n8{r5 .} ==> r8c3≠1
whip[8]: r5c1{n6 n5} - r7c1{n5 n3} - c4n3{r7 r5} - c8n3{r5 r8} - r8n7{c8 c7} - c7n5{r8 r3} - c2n5{r3 r8} - r8n1{c2 .} ==> r4c1≠6
whip[8]: c5n4{r6 r8} - b9n4{r8c9 r9c9} - c9n3{r9 r6} - c9n1{r6 r4} - r6c7{n1 n8} - c2n8{r6 r5} - b4n2{r5c2 r4c3} - r4n6{c3 .} ==> r6c5≠6
whip[9]: r5c1{n5 n6} - r7c1{n6 n3} - c4n3{r7 r5} - c8n3{r5 r8} - r8n7{c8 c7} - r8n1{c7 c2} - c1n1{r9 r1} - r1c3{n1 n5} - b7n5{r7c3 .} ==> r4c1≠5
whip[1]: r4n5{c9 .} ==> r5c7≠5
whip[4]: r8c2{n1 n5} - c7n5{r8 r3} - c3n5{r3 r1} - r1n1{c3 .} ==> r9c1≠1
whip[1]: b7n1{r9c2 .} ==> r6c2≠1
whip[4]: c9n3{r6 r9} - r9c1{n3 n7} - r4c1{n7 n1} - c9n1{r4 .} ==> r6c9≠8
whip[4]: c9n3{r6 r9} - r9c1{n3 n7} - r4c1{n7 n1} - c9n1{r4 .} ==> r6c9≠6
whip[4]: b7n7{r9c1 r9c2} - r9n9{c2 c7} - r9n1{c7 c9} - r4n1{c9 .} ==> r4c1≠7
singles ==> r4c1=1, r1c3=1
whip[2]: c9n1{r9 r6} - c9n3{r6 .} ==> r9c9≠4
singles ==> r8c9=4, r6c5=4, r4c5=7
whip[1]: r8n8{c6 .} ==> r7c5≠8
whip[2]: b8n4{r9c6 r9c4} - r9n2{c4 .} ==> r9c6≠3
whip[2]: b8n3{r8c6 r7c4} - r5n3{c4 .} ==> r8c8≠3
naked-single ==> r8c8=7
whip[2]: c8n3{r7 r5} - c4n3{r5 .} ==> r7c1≠3
whip[2]: c1n3{r2 r9} - c1n7{r9 .} ==> r2c1≠4
singles ==> r1c1=4, r2c8=4
whip[1]: r1n5{c9 .} ==> r3c7≠5, r3c9≠5
singles ==> r8c7=5, r7c9=8, r8c2=1
whip[2]: r3n5{c2 c3} - r3n9{c3 .} ==> r3c2≠7
whip[2]: r3n5{c3 c2} - r3n9{c2 .} ==> r3c3≠7
hidden-single-in-a-row ==> r3c7=7
whip[2]: c3n5{r7 r3} - c3n9{r3 .} ==> r7c3≠6
whip[2]: c5n9{r1 r5} - c5n2{r5 .} ==> r1c5≠8
whip[2]: c5n9{r5 r1} - c5n2{r1 .} ==> r5c5≠6
whip[3]: r4c8{n5 n9} - c6n9{r4 r1} - r1n8{c6 .} ==> r1c8≠5
stte
2) Solution with only whips and g-whips: - Code: Select all
g-whip[12]: r6n3{c9 c6} - c4n3{r5 r9} - c1n3{r9 r2} - r2n4{c1 c8} - c8n7{r2 r8} - r8n3{c8 c3} - b7n6{r8c3 r7c123} - r7c4{n6 n1} - r7c5{n1 n8} - c6n8{r8 r1} - c8n8{r1 r5} - r5n3{c8 .} ==> r7c9≠3
whip[15]: c8n7{r8 r2} - c1n7{r2 r4} - r6n7{c3 c5} - r6n4{c5 c6} - b2n4{r3c6 r3c4} - b8n4{r9c4 r8c5} - r8n6{c5 c6} - c6n3{r8 r9} - b7n3{r9c1 r7c1} - c1n6{r7 r5} - c3n6{r4 r7} - r7n9{c3 c8} - r4c8{n9 n5} - r5n5{c8 c2} - b7n5{r8c2 .} ==> r8c3≠7
whip[16]: b9n9{r9c7 r7c8} - b7n9{r7c3 r9c2} - b7n7{r9c2 r8c2} - r3n7{c2 c3} - r6n7{c3 c5} - r6n4{c5 c6} - b5n3{r6c6 r5c4} - r7n3{c4 c1} - r9c1{n3 n1} - r2c1{n1 n4} - r1c1{n4 n5} - r3c2{n5 n2} - r5n2{c2 c5} - r2n2{c5 c4} - r9c4{n2 n4} - r3n4{c4 .} ==> r9c7≠7
whip[1]: r9n7{c2 .} ==> r8c2≠7
whip[14]: r1n9{c6 c3} - r7n9{c3 c8} - r4n9{c8 c5} - r5n9{c5 c7} - r9n9{c7 c2} - b7n7{r9c2 r9c1} - r4n7{c1 c3} - b4n2{r4c3 r5c2} - r5n8{c2 c8} - c8n3{r5 r8} - r8n7{c8 c7} - c7n5{r8 r3} - c2n5{r3 r8} - c3n5{r7 .} ==> r3c6≠9
whip[1]: r3n9{c3 .} ==> r1c3≠9
whip[6]: r1n1{c3 c5} - r1n9{c5 c6} - c6n8{r1 r8} - r7c5{n8 n6} - b7n6{r7c1 r8c3} - c3n3{r8 .} ==> r2c3≠1
whip[10]: c2n9{r3 r9} - c7n9{r9 r5} - c8n9{r5 r7} - c3n9{r7 r3} - r3n7{c3 c7} - r8n7{c7 c8} - c8n3{r8 r5} - r5n8{c8 c2} - c2n5{r5 r8} - c7n5{r8 .} ==> r3c2≠2
g-whip[10]: r9n2{c4 c6} - b8n4{r9c6 r8c456} - c4n4{r9 r3} - r3c6{n4 n6} - r4c6{n6 n9} - r1n9{c6 c5} - b2n2{r1c5 r2c456} - c2n2{r2 r5} - r5c4{n2 n6} - r5c5{n6 .} ==> r9c4≠3
whip[10]: c8n3{r8 r5} - r6n3{c9 c6} - r6n4{c6 c5} - r8n4{c5 c6} - r9c6{n4 n2} - r3c6{n2 n6} - r4c6{n6 n9} - b6n9{r4c8 r5c7} - r9c7{n9 n1} - r9c4{n1 .} ==> r8c9≠3
whip[7]: c6n8{r8 r1} - c9n8{r1 r6} - r6n3{c9 c6} - r8n3{c6 c3} - r2n3{c3 c1} - r2n4{c1 c8} - c8n7{r2 .} ==> r8c8≠8
whip[8]: c6n8{r8 r1} - c9n8{r1 r6} - r6n3{c9 c6} - r5n3{c4 c8} - c8n8{r5 r2} - r2n4{c8 c1} - r2n3{c1 c3} - r8n3{c3 .} ==> r8c7≠8
whip[8]: r1n1{c3 c5} - r1n9{c5 c6} - c6n8{r1 r8} - r7c5{n8 n6} - b7n6{r7c1 r8c3} - r8n3{c3 c8} - c8n7{r8 r2} - r2n4{c8 .} ==> r2c1≠1
whip[9]: r8c2{n1 n5} - r8c7{n5 n7} - c7n1{r8 r6} - r9c7{n1 n9} - c2n9{r9 r3} - r3n7{c2 c3} - r6c3{n7 n6} - r8c3{n6 n3} - r8c8{n3 .} ==> r8c9≠1
whip[7]: r1n9{c5 c6} - c6n8{r1 r8} - r7c5{n8 n6} - r8c5{n6 n4} - r8c9{n4 n5} - r8c2{n5 n1} - r2n1{c2 .} ==> r1c5≠1
whip[1]: b2n1{r2c5 .} ==> r2c2≠1
whip[8]: c2n2{r2 r5} - c5n2{r5 r4} - c5n7{r4 r6} - c5n4{r6 r8} - r9c4{n4 n1} - r9c7{n1 n9} - r9c2{n9 n7} - r2c2{n7 .} ==> r2c4≠2
whip[5]: r9n2{c4 c6} - r9n4{c6 c9} - c4n4{r9 r3} - r3c6{n4 n6} - r2c4{n6 .} ==> r9c4≠1
whip[6]: b8n1{r7c5 r8c5} - r8c2{n1 n5} - r8c7{n5 n7} - r8c8{n7 n3} - r5n3{c8 c4} - r7n3{c4 .} ==> r7c1≠1
whip[7]: b8n1{r7c5 r8c5} - r8c2{n1 n5} - b9n5{r8c7 r7c8} - r7n8{c8 c5} - b2n8{r1c5 r1c6} - c6n9{r1 r4} - r4c8{n9 .} ==> r7c9≠1
whip[8]: r2c2{n2 n7} - r2c3{n7 n3} - r2n2{c3 c5} - r4n2{c5 c6} - c6n9{r4 r1} - c6n8{r1 r8} - r8n3{c6 c8} - c8n7{r8 .} ==> r3c3≠2
whip[5]: b4n2{r4c3 r5c2} - r2c2{n2 n7} - r3c3{n7 n9} - r7n9{c3 c8} - r4c8{n9 .} ==> r4c3≠5
whip[8]: r2c2{n2 n7} - r2c3{n7 n3} - b1n2{r2c3 r1c3} - r4n2{c3 c6} - c6n9{r4 r1} - c6n8{r1 r8} - r8n3{c6 c8} - c8n7{r8 .} ==> r2c5≠2
whip[1]: r2n2{c3 .} ==> r1c3≠2
whip[4]: b1n1{r1c3 r1c1} - c1n4{r1 r2} - r2n3{c1 c3} - c3n2{r2 .} ==> r4c3≠1
whip[8]: r4n5{c9 c1} - r5c1{n5 n6} - r7c1{n6 n3} - r2n3{c1 c3} - c3n2{r2 r4} - r5c2{n2 n8} - r5c7{n8 n9} - r4c8{n9 .} ==> r5c8≠5
whip[8]: r7n9{c3 c8} - r9c7{n9 n1} - c2n1{r9 r6} - c2n8{r6 r5} - r5c8{n8 n3} - r8c8{n3 n7} - r8c7{n7 n5} - r8c2{n5 .} ==> r7c3≠1
whip[1]: r7n1{c5 .} ==> r8c5≠1
g-whip[8]: c2n1{r9 r6} - c7n1{r6 r9} - b9n9{r9c7 r7c8} - b9n8{r7c8 r789c9} - r6n8{c9 c7} - r5c8{n8 n3} - c4n3{r5 r7} - r8n3{c6 .} ==> r8c3≠1
whip[8]: r5c1{n6 n5} - r7c1{n5 n3} - c4n3{r7 r5} - c8n3{r5 r8} - r8n7{c8 c7} - c7n5{r8 r3} - c2n5{r3 r8} - r8n1{c2 .} ==> r4c1≠6
whip[8]: c5n4{r6 r8} - b9n4{r8c9 r9c9} - c9n3{r9 r6} - c9n1{r6 r4} - r6c7{n1 n8} - c2n8{r6 r5} - b4n2{r5c2 r4c3} - r4n6{c3 .} ==> r6c5≠6
whip[9]: r5c1{n5 n6} - r7c1{n6 n3} - c4n3{r7 r5} - c8n3{r5 r8} - r8n7{c8 c7} - r8n1{c7 c2} - c1n1{r9 r1} - r1c3{n1 n5} - b7n5{r7c3 .} ==> r4c1≠5
whip[1]: r4n5{c9 .} ==> r5c7≠5
whip[4]: r8c2{n1 n5} - c7n5{r8 r3} - c3n5{r3 r1} - r1n1{c3 .} ==> r9c1≠1
whip[1]: b7n1{r9c2 .} ==> r6c2≠1
whip[4]: c9n3{r6 r9} - r9c1{n3 n7} - r4c1{n7 n1} - c9n1{r4 .} ==> r6c9≠8
whip[4]: c9n3{r6 r9} - r9c1{n3 n7} - r4c1{n7 n1} - c9n1{r4 .} ==> r6c9≠6
whip[4]: b7n7{r9c1 r9c2} - r9n9{c2 c7} - r9n1{c7 c9} - r4n1{c9 .} ==> r4c1≠7
singles ==> r4c1=1, r1c3=1
whip[2]: c9n1{r9 r6} - c9n3{r6 .} ==> r9c9≠4
singles ==> r8c9=4, r6c5=4, r4c5=7
whip[1]: r8n8{c6 .} ==> r7c5≠8
whip[2]: b8n4{r9c6 r9c4} - r9n2{c4 .} ==> r9c6≠3
whip[2]: b8n3{r8c6 r7c4} - r5n3{c4 .} ==> r8c8≠3
naked-single ==> r8c8=7
whip[2]: c8n3{r7 r5} - c4n3{r5 .} ==> r7c1≠3
whip[2]: c1n3{r2 r9} - c1n7{r9 .} ==> r2c1≠4
singles ==> r1c1=4, r2c8=4
whip[1]: r1n5{c9 .} ==> r3c7≠5, r3c9≠5
singles ==> r8c7=5, r7c9=8, r8c2=1
whip[2]: r3n5{c2 c3} - r3n9{c3 .} ==> r3c2≠7
whip[2]: r3n5{c3 c2} - r3n9{c2 .} ==> r3c3≠7
hidden-single-in-a-row ==> r3c7=7
whip[2]: c3n5{r7 r3} - c3n9{r3 .} ==> r7c3≠6
whip[2]: c5n9{r1 r5} - c5n2{r5 .} ==> r1c5≠8
whip[2]: c5n9{r5 r1} - c5n2{r1 .} ==> r5c5≠6
whip[3]: r4c8{n5 n9} - c6n9{r4 r1} - r1n8{c6 .} ==> r1c8≠5
stte
As you can see, 3 g-whips are found, but they do not modify the rating: gW = W.
As for the resolution times and memory (using the simplest-first strategy), the solution with g-whips is 15 times slower and it takes 6.7 times more memory than with whips only.
I can't say anything about your nodes count, as CSP-Rules is not based on nodes.