- Code: Select all
000001020300040500000600007001000006040080090500000300800002000050090400006700000 Ocean's New Year's present for ravel #2
*-----------*
|...|..1|.2.|
|3..|.4.|5..|
|...|6..|..7|
|---+---+---|
|..1|...|..6|
|.4.|.8.|.9.|
|5..|...|3..|
|---+---+---|
|8..|..2|...|
|.5.|.9.|4..|
|..6|7..|...|
*-----------*
*-----------------------------------------------------------------------------*
| 4679 6789 45789 | 3589 357 1 | 689 2 3489 |
| 3 126789 2789 | 289 4 789 | 5 168 189 |
| 1249 1289 24589 | 6 235 3589 | 189 1348 7 |
|-------------------------+-------------------------+-------------------------|
| 279 23789 1 | 23459 2357 34579 | 278 4578 6 |
| 267 4 237 | 1235 8 3567 | 127 9 125 |
| 5 26789 2789 | 1249 1267 4679 | 3 1478 1248 |
|-------------------------+-------------------------+-------------------------|
| 8 1379 3479 | 1345 1356 2 | 1679 13567 1359 |
| 127 5 237 | 138 9 368 | 4 13678 1238 |
| 1249 1239 6 | 7 135 3458 | 1289 1358 123589 |
*-----------------------------------------------------------------------------*
I think we might agree, that if braid analysis can help with this puzzle, it is a technique to be reckoned with, as it has very elaborate chains in Sudoku Explainer program output.
First some basic eliminations:
Naked Quad in r1c7-r2c8-r2c9-r3c7
Exclude 6 from r6c2, Multi-colors
Hidden single r5c1=6
"No hint available"
- Code: Select all
*-----------------------------------------------------------------------------* N | Z
| 479 6789 45789 | 3589 357 1 | 689 2 34 | |
| 3 126789 2789 | 289* 4 789* | 5 168* 189* | |
| 1249 1289 24589 | 6 235 3589 | 189 34 7 | |
|-------------------------+-------------------------+-------------------------| |
| 279 23789 1 | 23459 2357 34579 | 278 4578 6 | 6 |
| 6 4 237 | 1235 8 357 | 127 9 125 | |
| 5 2789 2789 | 1249 1267 4679 | 3 1478 1248 | |
|-------------------------+-------------------------+-------------------------| |
| 8 1379 3479 | 1345 1356 2 | 1679 13567 1359 | |
| 127 5 237 | 138 9 368 | 4 13678 1238 | |
| 1249 1239 6 | 7 135 3458 | 1289 1358 123589 | |
*-----------------------------------------------------------------------------* |
N 5
-------------------------------------------------------------------------------
Z 6
Tower 123 must be a braid, and the digit in r4c1 is a traveler with 5 or 6.
Not much else is obvious at this point.
Every strand in every tower and floor has four or five possible digits.
But, examine the strands in Floor 123:
N1 - 4789
Z1 - 5689
N2 - 23689
Z2 - 13789
N3 - 1589
Z3 - 2489
The 8 and 9 candidates appear on this list every time; but oddly enough they cannot be a traveling pair on this floor, since they don't occur together in any two cells of the critical boxrows r1c456, r1c789, r3c456, or r3c789, one of which would be required for travelers. As they do not travel together, by rule they can only occur together (intersect) in at most one boxrow in this floor, or perhaps in none, when both travel with other numbers. If 89 are present only in r2c23, and excluded from the marked cells, it would follow that exactly one of them travels; but this scenario would place a 6 in r7c7 and a 3 and 5 in boxcol r123c5, depleting r79c5. No suitable boxrow for both 8 and 9 is available that does not deplete our strand candidates somehow; both travel separately, and with 4 and 5; therefore they must appear in the marked cells; therefore exclude 8 and 9 from r2c23. Update the mapping:
N1 - 4789
Z1 - 5689
N2 - 236
Z2 - 137
N3 - 1589
Z3 - 2489
Now exclude 237 from r1367c3, Naked triples.
Since 9 travels in Floor 123, it cannot also do so in Tower 123.
Remove 9 from r4c1.
This sets up a "broken Z strand" in Tower 123 Z2, where at most one of the 9's marked below can be true.
- Code: Select all
*-----------------------------------------------------------------------------*
| 479 6789* 4589 | 3589 357 1 | 689 2 34 |
| 3 1267 27 | 289 4 789 | 5 168 189 |
| 1249 1289* 4589 | 6 235 3589 | 189 34 7 |
|-------------------------+-------------------------+-------------------------|
| 27 23789 1 | 23459 2357 34579 | 278 4578 6 |
| 6 4 237 | 1235 8 357 | 127 9 125 |
| 5 2789 89 | 1249 1267 4679 | 3 1478 1248 |
|-------------------------+-------------------------+-------------------------|
| 8 1379 49* | 1345 1356 2 | 1679 13567 1359 |
| 127 5 237 | 138 9 368 | 4 13678 1238 |
| 1249 1239 6 | 7 135 3458 | 1289 1358 123589 |
*-----------------------------------------------------------------------------*
These broken strands with three digits can be useful when you can establish that one of the three digits is true, leading to further exclusions; but that is not immediately the case here.
(As Simple Sudoku is stumped again and Sudoku Explainer now sees nothing easier than 2 Dynamic Forcing Chains of 24 and 25 steps, proving that r1c1 isn't 7 because then r6c5 has to be 6 AND not be 6, just maybe there is an easier Braiding deduction somewhere?)
To be continued...