Remember that you asked for this!
Readers, feel free to skip ahead to the last few paragraphs.
Simple Sudoku gets us this far:
- Code: Select all
*-----------*
|..5|.9.|...|
|..4|57.|...|
|69.|84.|.35|
|---+---+---|
|..1|.87|...|
|47.|15.|82.|
|...|46.|571|
|---+---+---|
|3..|.14|.58|
|.4.|.3.|21.|
|1.9|.2.|3..|
*-----------*
*-----------*
|..5|.9.|...|
|..4|57.|...|
|69.|84.|.35|
|---+---+---|
|..1|.87|...|
|47.|15.|82.|
|...|46.|571|
|---+---+---|
|3..|.14|.58|
|.4.|.3.|21.|
|1.9|.2.|3..|
*-----------*
*-----------------------------------------------------------*
| 278 13 5 | 23 9 236 | 1467 468 2467 |
| 28 13 4 | 5 7 1236 | 169 689 269 |
| 6 9 27 | 8 4 12 | 17 3 5 |
|-------------------+-------------------+-------------------|
| 259 256 1 | 23 8 7 | 469 469 3469 |
| 4 7 36 | 1 5 39 | 8 2 369 |
| 29 28 238 | 4 6 239 | 5 7 1 |
|-------------------+-------------------+-------------------|
| 3 26 267 | 679 1 4 | 679 5 8 |
| 57 4 678 | 679 3 58 | 2 1 679 |
| 1 58 9 | 67 2 58 | 3 46 467 |
*-----------------------------------------------------------*
"no hint available"
Here's a suitable blank template we may start with:
- Code: Select all
Tower N Strands
1N 1 2 3 4 5 6 7 8 9
2N 1 2 3 4 5 6 7 8 9
3N 1 2 3 4 5 6 7 8 9
4N 1 2 3 4 5 6 7 8 9
5N 1 2 3 4 5 6 7 8 9
6N 1 2 3 4 5 6 7 8 9
7N 1 2 3 4 5 6 7 8 9
8N 1 2 3 4 5 6 7 8 9
9N 1 2 3 4 5 6 7 8 9
Floor N Strands
1N 1 2 3 4 5 6 7 8 9
2N 1 2 3 4 5 6 7 8 9
3N 1 2 3 4 5 6 7 8 9
4N 1 2 3 4 5 6 7 8 9
5N 1 2 3 4 5 6 7 8 9
6N 1 2 3 4 5 6 7 8 9
7N 1 2 3 4 5 6 7 8 9
8N 1 2 3 4 5 6 7 8 9
9N 1 2 3 4 5 6 7 8 9
Tower Z Strands
1Z 1 2 3 4 5 6 7 8 9
2Z 1 2 3 4 5 6 7 8 9
3Z 1 2 3 4 5 6 7 8 9
4Z 1 2 3 4 5 6 7 8 9
5Z 1 2 3 4 5 6 7 8 9
6Z 1 2 3 4 5 6 7 8 9
7Z 1 2 3 4 5 6 7 8 9
8Z 1 2 3 4 5 6 7 8 9
9Z 1 2 3 4 5 6 7 8 9
Floor Z Strands
1Z 1 2 3 4 5 6 7 8 9
2Z 1 2 3 4 5 6 7 8 9
3Z 1 2 3 4 5 6 7 8 9
4Z 1 2 3 4 5 6 7 8 9
5Z 1 2 3 4 5 6 7 8 9
6Z 1 2 3 4 5 6 7 8 9
7Z 1 2 3 4 5 6 7 8 9
8Z 1 2 3 4 5 6 7 8 9
9Z 1 2 3 4 5 6 7 8 9
Now the same chart filled out after analysis, where * indicates a strand placement, and 0 means no strand placement,
and the rest strand candidates:
- Code: Select all
Tower N Strands
1N 0 2 0 0 0 6 7 8 0
2N 1* 0 3* 0 0 0 0 0 0
3N 0 2 0 4* 5 0 0 0 0
-------------------------------------------------------------------------
4N 0 0 0 0 5* 0 0 8* 0
5N 0 0 0 0 0 0 7* 0 9*
6N 1* 2 3 0 0 0 0 0 0
-------------------------------------------------------------------------
7N 0 0 0 4 0 6 7 0 9
8N 0 0 3* 0 0 6 0 0 9
9N 0 0 0 4 5* 6 0 0 0
Floor N Strands
1N 1 0 3 0 5* 0 7 0 0
2N 1 2 0 4* 0 0 0 8 0
3N 0 2 0 0 0 6 0 0 9*
-------------------------------------------------------------------------
4N 1* 0 0 0 5* 0 0 0 0
5N 0 0 3 4* 0 6 0 0 0
6N 0 2 3 0 0 0 0 8* 9
-------------------------------------------------------------------------
7N 0 0 3* 0 0 6 7 0 0
8N 0 0 0 0 5 6 7 8 0
9N 1* 0 0 0 0 0 0 0 9
Tower Z Strands
1Z 0 2 0 0 0 6 0 8 0
2Z 0 0 0 0 0 0 0 0 9*
3Z 0 0 0 0 5 0 7 0 0
-------------------------------------------------------------------------
4Z 0 2 3 0 0 0 0 0 0
5Z 0 0 0 4* 0 0 0 0 0
6Z 0 0 0 0 0 6* 0 0 0
-------------------------------------------------------------------------
7Z 1* 0 0 4 0 6 0 0 0
8Z 0 0 0 4 0 6 0 8* 9
9Z 0 2* 0 0 0 6 7 0 9
Floor Z Strands
1Z 1 2 0 0 0 0 0 8 0
2Z 0 0 3 0 0 0 0 8 0
3Z 0 2 0 0 0 6 7 0 0
-------------------------------------------------------------------------
4Z 0 2 0 0 0 6 0 0 9
5Z 0 0 0 0 0 0 7* 0 0
6Z 0 0 3 0 0 0 0 0 9
-------------------------------------------------------------------------
7Z 0 2 0 0 0 6 7 0 0
8Z 0 0 0 4* 0 6 7 0 0
9Z 0 0 0 0 5 0 0 8 9
The rules from the Sudopedia article:
"A pair of digits in one of the intersections in a chute can only appear in 0 or 2 other intersections in that
chute.
This rule is the direct result of the way digits are distributed in a chute. A pair will either repeat in all
boxes [cells] of a chute or not at all.
A pair of digits present in a boxrow can only appear in 0 or 1 boxcol in the tower that contains it.
A pair of digits present in a boxcol can only appear in 0 or 1 boxrow in the floor that contains it.
These rules are based on the fact that within a single box, a certain pair can only exist in a boxrow or a
boxcol, but not in both. The crossing chute will have at least one intersection without that pair. Because there
cannot be 2 pairs of the same digits in a chute, there can only be one or none at all.
A pair of digits which repeats in a floor can only appear in 0 or 1 boxcol in each tower.
A pair of digits which repeats in a tower can only appear in 0 or 1 boxrow in each floor.
A direct extension of the previous rules.
...
A fixed digit in any N strand eliminates the Z-Rope.
A fixed digit in any Z strand eliminates the N-Rope.
2 fixed digits in any N strand eliminates the Z-Braid.
2 fixed digits in any Z strand eliminates the N-Braid."
- Code: Select all
*-----------------------------------------------------------* N | Z
| 278 13 5 | 23 9 236 | 1467 468 2467 | 4 |
| 28 13 4 | 5 7 1236 | 169 689 269 | 9 |
| 6 9 27 | 8 4 12 | 17 3 5 | 5 |
|-------------------+-------------------+-------------------| |
| 259 256 1 | 23 8 7 | 469 469 3469 | 4 |
| 4 7 36 | 1 5 39 | 8 2 369 | 8 |
| 29 28 238 | 4 6 239 | 5 7 1 | 15 | 7
|-------------------+-------------------+-------------------| |
| 3 26 267 | 679 1 4 | 679 5 8 | |
| 57 4 678 | 679 3 58 | 2 1 679 | 1 | 2
| 1 58 9 | 67 2 58 | 3 46 467 | 3 |
*-----------------------------------------------------------* |
N 13 4 79 1 58 3 5
-------------------------------------------------------------
Z 9 6 4 2 1 8
We may rule out all Z-ropes at one go, as all towers and floors haves fixed N digits.
N-rope is only possible in the top floor (269/357/148).
Tower 123: N-braid
Tower 456: N-braid
Tower 789: N-braid or Z-braid
Floor 123: N-rope or N-braid or Z-braid
Floor 456: N-braid
Floor 789: N-braid or Z-braid
In Tower 123, 13 travel and 9 does not, therefore r78c3 contain a traveling pair.
What can it be?
78 pair is impossible, that would leave cells r8c1 r9c2 depleted.
The two cells cannot be 27, as that would deplete r3c3.
Nor can they be 26, as that depletes r7c2.
67 forces 8 in r6c3 and 2 in r7c2, depleting r6c2 (but perhaps you will consider this too long an implication chain
with 3 steps, and disallow it? Please...).
What's left? 68 and 28.
Both contain 8 so... r8c3=8, and the rest are singles.