Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Post puzzles for others to solve here.

Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby ghfick » Fri Feb 17, 2023 1:45 pm

Code: Select all
+----------------------+-------------------+-------------------+
| 1489  14589  3       | 18    12578 1257  | 6     24579 579   |
| 2     1569   56      | 136   4     1357  | 379   3579  8     |
| 468   7      4568    | 368   2358  9     | 234   1     35    |
+----------------------+-------------------+-------------------+
| 489   2489   248     | 7     239   6     | 5     239   1     |
| 46789 245689 245678  | 1349  1239  1234  | 23789 23679 3679  |
| 3     269    1       | 5     29    8     | 279   2679  4     |
+----------------------+-------------------+-------------------+
| 1467  3      467     | 2     1579  1457  | 479   8     5679  |
| 5     148    478     | 13489 6     1347  | 3479  3479  2     |
| 4678  2468   9       | 348   3578  3457  | 1     34567 3567  |
+----------------------+-------------------+-------------------+


..3...6..2...4...8.7...9.1....7.65.1.........3.15.8..4.3.2...8.5...6...2..9...1 ..
SER=9.1
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby eleven » Sun Feb 19, 2023 12:53 am

Hm, is there a special technique, a manual player could use to solve it ?
It took me 5 steps, 4 of them hard, to get a number, the difficulty was still 9.0, so i gave up.
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby totuan » Sun Feb 19, 2023 4:52 am

My path for this one – kind of boring one :D
Hidden Text: Show
Code: Select all
 *--------------------------------------------------------------------*
 |h1489  h14589  3      |h18     12578  1257   | 6     i24    e579    |
 | 2     g1569   56     | 136    4      1357   |f379   f3579   8      |
 | 468    7      4568   | 368   k2358   9      |j24     1      35     |
 |----------------------+----------------------+----------------------|
 | 489    489    248    | 7      239    6      | 5      239    1      |
 | 679   g569    2567   | 134-9  1239   1234   | 8      2369  d369*   |
 | 3     g69     1      | 5     m29     8      | 279    2679   4      |
 |----------------------+----------------------+----------------------|
 | 1467   3      467    | 2     b1579   1457   | 479    8     c5679   |
 | 5      148    478    |a13489  6      1347   | 3479   3479   2      |
 | 4678   2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

01: [(9)r8c4=r7c5-r7c9=r5c9]=(9)r1c9-r2c78=(569)r256c2-(59=148)r1c124-(4=2)r1c8-r3c7=r3c5-(2=9)r6c5 => r5c4<>9, r8c4=9
Code: Select all
 *--------------------------------------------------------------------*
 |%1489  @14589  3      | 18     12578  1257   | 6      24     579    |
 | 2     @1569  @56     |&136    4      1357   | 379    3579   8      |
 |*468    7     *4568   |&368   ^2358   9      |^24     1     &35     |
 |----------------------+----------------------+----------------------|
 |*489   *489    248    | 7     &239    6      | 5     &239    1      |
 | 679   @569    2567   | 134    1239   1234   | 8     &2369  &369    |
 | 3     @6-9    1      | 5     ^29     8      | 279    2679   4      |
 |----------------------+----------------------+----------------------|
 |%1467   3      467    | 2      157    1457   |^479    8      5679   |
 | 5     *148   *478    | 9      6      1347   |^347   #347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

MUG (48)r348c123 * marked cells => (56)r3c13=(9)r4c12=(1)r8c2=(7)r8c3
02: Present as diagram: => r6c2<>9, r6c2=6
Code: Select all
(9)r4c12*
 ||
(1)r8c2-r7c1=(1-9)r1c1=r12c2*
 ||
 ||     (3)r8c8-r45c8=r4c5/r5c9-r3c59=(3-6)r3c4=(56)r2c34-(56)r12c2=(56)r56c2*
 ||      ||
(7)r8c3-(7)r8c8
 ||      ||
 ||     (4)r8c8-r78c7=(4-2)r3c7=r3c5-(2=9)r6c5*
 ||
(56)r3c13/r2c3-(56)r12c2=(56)r56c2*

Code: Select all
 *--------------------------------------------------------------------*
 |%1489  @14589  3      | 18     12578  1257   | 6      24    &579    |
 | 2     @159   ^56     | 136    4      1357   | 379    3579   8      |
 |*468    7     *4568   | 368    2358   9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 |*489   *489    248    | 7      239    6      | 5      239    1      |
 |&79    @5-9    257    | 134    1239   1234   | 8      2369  &369    |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 |%1467   3     ^467    | 2      157    1457   | 479    8     &5679   |
 | 5     *148   *478    | 9      6      1347   | 347    347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

MUG (48)r348c123 * marked cells => (56)r3c13=(9)r4c12=(1)r8c2=(7)r8c3
03: Present as diagram: => r5c2<>9, r5c2=5
Code: Select all
(9)r4c12*
 ||
(1)r8c2-r7c1=(1-9)r1c1=r12c2*
 ||
 ||                         (6)r7c3-(6=5)r2c3-r12c2=r5c1*
 ||                          ||
(7-8)r8c3=(8-1)r8c1=(1)r7c1-(6)r7c1
 ||                          ||
 ||                         (6)r7c9-(9)r7c9=[(9)r5c9=r1c9-r1c1=r45c1]
 ||
(56)r3c13/r2c3-(5)r12c2=(5)r56c2*

Code: Select all
 *--------------------------------------------------------------------*
 |%1489  &1489   3      |@18     12578 &1257   | 6     &24     579    |
 | 2     *19     56     |@136    4     *1357   | 379    3579   8      |
 | 468    7      4568   | 368    2358   9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 | 489    489    248    | 7      239    6      | 5      239    1      |
 | 79     5      27     | 34-1  #1239  &234-1  | 8      2369   369    |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 | 1467   3      467    | 2      157    1457   | 479    8      5679   |
 | 5     *148    478    | 9      6     *1347   | 347    347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

04: (1)r5c5=(14-2)r5c46=r1c6-(2=4)r1c8-(4=189)r1c12/r2c2-(8=1)r1c4 => r5c4<>1
05: (X-wing: 1’s r28c26)=(1)r2c4-(1=8)r1c4-(8=149)r1c12/r2c2-(4=2)r1c8-r1c6=r5c6 => r5c6<>1, r5c5=1
Code: Select all
 *--------------------------------------------------------------------*
 | 1489   1489   3      | 18     2578   257    | 6      24     579    |
 | 2      19     56     | 136    4      357    | 379    3579   8      |
 | 468    7      4568   | 368    2358   9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 | 489    489   e248    | 7      239    6      | 5     a39-2   1      |
 | 79     5     d27     |c34     1     c234    | 8     b2369  b369    |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 | 1467   3      467    | 2      57     1457   | 479    8      5679   |
 | 5      148    478    | 9      6      1347   | 347    347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

06: (3)r4c8=r5c89-(34=2)r5c46-r5c3=r4c3 => r4c8<>2
Code: Select all
 *--------------------------------------------------------------------*
 | 1489   1489   3      | 18     2578   257    | 6      24     579    |
 | 2      19     56     | 136    4      357    | 379    3579   8      |
 | 468    7      4568   | 368    2358   9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 | 489    489    248    | 7      239    6      | 5      39     1      |
 | 79     5      27     | 34     1      234    | 8      2369   369    |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 | 1467   3      467    | 2      57     1457   | 479    8      5679   |
 | 5      148    48-7   | 9      6      1347   | 347    347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567  3567   |
 *--------------------------------------------------------------------*

07: Present as diagram: => r8c3<>7
Code: Select all
(7)r8c8*
 ||
(4)r8c8-r78c7=(4-2)r3c7=r3c5--r4c5=r4c3-(2=7)r5c3*
 ||                          |
(3)r8c8-r4c8=(3)r4c5---------

Code: Select all
 *--------------------------------------------------------------------*
 |&1489  &1489   3      |&18    #2578  %257    | 6     %24    ^579    |
 | 2     ^19     56     | 136    4      357    | 379    3579   8      |
 | 468    7      4568   | 368    2358   9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 | 489    489    248    | 7      239    6      | 5      39     1      |
 | 79     5     $7-2    | 34     1     %234    | 8      2369   369    |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 | 1467   3     $467    | 2     $57     1457   | 479    8     ^5679   |
 | 5     ^148    48     | 9      6     ^1347   |^347   ^347    2      |
 | 467    2      9      | 348    3578   3457   | 1      34567 ^3567   |
 *--------------------------------------------------------------------*

08: Present as diagram: => r5c3<>2, some singles
Code: Select all
(2)r1c5-r1c6=r5c6*
 ||
(5)r1c5-(5=7)r7c5-r7c3=r5c3*
 ||
(7)r1c5-r1c9=r79c9-r8c78=(7-1)r8c6=r8c2-(1=9)r2c2-(9=148)r1c124-(4=2)r1c8-r1c6=r5c6*
 ||
(18)r1c45-(18=49)r1c12-(4=2)r1c8-r1c6=r5c6*

Code: Select all
 *--------------------------------------------------------------------*
 |&148   &1489   3      |&18     2578   257    | 6     #24     579    |
 | 2     &19    ^56     | 136    4      357    | 379   ^3579   8      |
 |*468    7     *4568   |%368   %2358   9      |#24     1      35     |
 |----------------------+----------------------+----------------------|
 |*48    *48     2      | 7      39     6      | 5      39     1      |
 | 9      5      7      | 34     1      234    | 8     ^36-2   36     |
 | 3      6      1      | 5      29     8      | 279    279    4      |
 |----------------------+----------------------+----------------------|
 | 1467   3     ^46     | 2      57     1457   | 479    8      5679   |
 | 5     *148   *48     | 9      6      1347   | 347    347    2      |
 | 467    2      9      | 348    3578   3457   | 1     ^34567  3567   |
 *--------------------------------------------------------------------*

MUG (48)r348c123 * marked cells => (8)r3c45=(1)r8c2=(4)r3c7
09: Present as diagram: => r5c8<>2, some singles
Code: Select all
(4)r3c7-(4=2)r1c8
 ||
(8)r3c45-(8=1)r1c4-r1c12=r2c2-(1=468)r8c23/r7c3-(6=5)r2c3-r2c8=(5-6)r9c8=r5c8*
 ||
(1)r8c1-(1=9)r2c2-(9=148)r1c124-(4=2)r1c8*

Code: Select all
 *--------------------------------------------------------------------*
 | 148    1489   3      | 18    *2578   5-7    | 6      24    *579    |
 | 2      19     56     | 136    4      357    | 379    357    8      |
 | 468    7      4568   | 368    258    9      | 24     1      35     |
 |----------------------+----------------------+----------------------|
 | 48     48     2      | 7      3      6      | 5      9      1      |
 | 9      5      7      | 4      1      2      | 8      36     36     |
 | 3      6      1      | 5      9      8      | 27     27     4      |
 |----------------------+----------------------+----------------------|
 |*1467   3      46     | 2     *57     145-7  | 49-7   8     *5679   |
 | 5      148    48     | 9      6      1347   | 347    347    2      |
 |*467    2      9      | 38    *578    345-7  | 1      3456-7*3567   |
 *--------------------------------------------------------------------*

10: Swordfish 7’s => r1c6, r7c67, r9c68<>7, r1c6=5
Code: Select all
 *-----------------------------------------------------------*
 |e148   1489  3     | 18    278   5     | 6     24    79    |
 | 2    d19   b56    |c136   4     37    | 379   357   8     |
 | 468   7     4568  | 368   28    9     | 24    1     35    |
 |-------------------+-------------------+-------------------|
 | 48    48    2     | 7     3     6     | 5     9     1     |
 | 9     5     7     | 4     1     2     | 8     36    36    |
 | 3     6     1     | 5     9     8     | 27    27    4     |
 |-------------------+-------------------+-------------------|
 |f167-4 3    a46    | 2     57   g14    | 9-4   8     5679  |
 | 5     148   48    | 9     6     1347  | 347   347   2     |
 | 467   2     9     | 38    578   34    | 1     3456  3567  |
 *-----------------------------------------------------------*

11: (4=6)r7c3-r2c3=(6-1)r2c4=r2c2-r1c1=r7c1-(1=4)r7c6 => r7c17<>4, stte

Thanks for the puzzle!
totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby ghfick » Mon Feb 20, 2023 7:17 pm

The puzzle is from page 6 in Andrew's very fine book: 'The Logic Of Sudoku". Andrew describes this puzzle as "an example of an intractable sudoku". Andrew's book was published in 2007. I am wondering if this puzzle might have an elegant, short[ish] solution path using the most currently developed techniques. Thanks to totuan and eleven.
Even though the puzzle is only an SE of 9.1, all paths [ I have seen ] need many difficult steps. So Andrew's remark stands up in 2023.
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby ghfick » Mon Feb 20, 2023 7:21 pm

Here is the default path from YZF_Sudoku 625

Code: Select all

Hidden Single: 2 in b7 => r9c2=2
Hidden Single: 8 in b6 => r5c7=8
Locked Candidates 2 (Claiming): 4 in r4 => r5c1<>4,r5c2<>4,r5c3<>4
Locked Candidates 1 (Pointing): 7 in b4 => r5c8<>7,r5c9<>7
Hidden Pair: 24 in r1c8,r3c7 => r1c8<>579,r3c7<>3
AIC Type 2: 3r8c7 = r2c7 - (3=5)r3c9 - r2c8 = 5r9c8 => r9c8<>3
ALS Discontinuous Nice Loop: (1=356782)b2p124678 - (2=13574)r12789c6 - (4=3681)r1239c4 => r1c6<>1
Cell Forcing Chain: Each candidate in  r1c2 true in turn will all lead to: r7c5<>1
1r1c2 - 1r1c1 = 1r7c1
4r1c2 - (4=35682)r3c13459 - (2=391)r456c5
5r1c2 - (5=691)r256c2 - 1r1c1 = 1r7c1
8r1c2 - (8=1)r1c4 - 1r1c1 = 1r7c1
9r1c2 - (9=561)r256c2 - 1r1c1 = 1r7c1
Grouped AIC Type 2: 4r5c6 = (4-9)r5c4 = (9-1)r8c4 = 1r78c6 => r5c6<>1
Cell Forcing Chain: Each candidate in  r3c5 true in turn will all lead to: r8c4<>3
2r3c5 - (2=9)r6c5 - 9r5c4 = 9r8c4
3r3c5 - (3=129)r456c5 - 9r5c4 = 9r8c4
5r3c5 - (5=3)r3c9 - 3r2c7 = 3r8c7
8r3c5 - (8=163)r123c4
Region Forcing Chain: Each 9 in c9 true in turn will all lead to: r8c4<>8
9r1c9 - (9=45681)b1p12679 - (1=8)r1c4
9r5c9 - 9r5c4 = 9r8c4
9r7c9 - 9r7c5 = 9r8c4
Locked Candidates 2 (Claiming): 8 in r8 => r9c1<>8
Region Forcing Chain: Each 6 in r7 true in turn will all lead to: r9c5<>5
(6-1)r7c1 = 1r1c1 - (1=8)r1c4 - 8r9c4 = 8r9c5
6r7c3 - (6=5)r2c3 - 5r2c8 = 5r9c8
(6-5)r7c9 = 5r7c56
Cell Forcing Chain: Each candidate in  r8c8 true in turn will all lead to: r9c8<>4
3r8c8 - 3r45c8 = 3r5c9 - (3=5)r3c9 - 5r2c8 = 5r9c8
4r8c8
7r8c8 - (7=3692)b6p2568 - (2=4)r1c8
9r8c8 - (9=13684)r12389c4 - (4=13572)r12789c6 - (2=4)r1c8
Memory Chain: Start From 4r1c1 causes 4 to disappear in Column 8 => r1c1<>4
4r1c1- r1c8(4=2) - 2r3(c7=c5) - 2r4(c5=c3) - 4r4(c3=c2) - 8r4(c2=c1) - r3c1(8=6) - 6b7(p17=p3) - 4c3(r7=r8) - 4c8(r8=.)
Memory Chain: Start From 8r1c2 causes 6 to disappear in Box 1 => r1c2<>8
8r1c2- r1c4(8=1) - 1r2(c46=c2) - r8c2(1=4) - r8c4(4=9) - 1r8(c4=c6) - 1r7(c6=c1) - r1c1(1=9) - 8c1(r1=r4) - 4c1(r4=r3) - 4c7(r3=r7) - 9r7(c7=c9) - 6r7(c9=c3) - 6b1(p69=.)
ALS AIC Type 1: (9=5672)b4p4568 - r5c6 = r1c6 - (2=4)r1c8 - (4=1569)r1256c2 => r4c2<>9
Cell Forcing Chain: Each candidate in  r4c1 true in turn will all lead to: r7c1<>4
4r4c1
8r4c1 - (8=45691)r12456c2 - 1r1c1 = 1r7c1
9r4c1 - (9=5672)b4p4568 - 2r5c6 = 2r1c6 - (2=4)r1c8 - (4=5691)r1256c2 - 1r1c1 = 1r7c1
Region Forcing Chain: Each 1 in r8 true in turn will all lead to: r8c6<>4
1r8c2 - (1=5694)r1256c2 - 4r1c8 = 4r8c8
1r8c4 - (1=3684)r1239c4
1r8c6
Memory Chain: Start From 1r1c5 causes 9 to disappear in Box 3 => r1c5<>1
1r1c5- r1c4(1=8) - 8r9(c4=c5) - 7c5(r9=r7) - 5c5(r7=r3) - 2b2(p8=p3) - 7r1(c6=c9) - 5b3(p3=p5) - r2c3(5=6) - r7c3(6=4) - r7c7(4=9) - 9b3(p4=.)
Hidden Single: 1 in c5 => r5c5=1
Region Forcing Chain: Each 9 in c9 true in turn will all lead to: r2c6,r8c4<>1
9r1c9 - (9=81)r1c14 - 1r1c2 = 1r1c4,r8c2 - 1r8c4 = 1r12c4
9r5c9 - (9=34681)r12359c4
9r7c9 - (9=345781)b8p236789
Region Forcing Chain: Each 3 in c9 true in turn will all lead to: r3c5<>3
3r3c9
3r5c9 - 3r4c8 = 3r4c5
3r9c9 - (3=47891)r8c23478 - (1=5694)r1256c2 - (4=35682)r3c13459
AIC Type 2: 3r8c7 = r2c7 - r3c9 = (3-6)r3c4 = (6-1)r2c4 = r2c2 - r8c2 = 1r8c6 => r8c6<>3
Locked Candidates 2 (Claiming): 3 in r8 => r9c9<>3
ALS Discontinuous Nice Loop: (4=93)r58c4 - (3=25798)r13467c5 - (8=13694)r12358c4 => r9c4<>4
Hidden Pair: 49 in r5c4,r8c4 => r5c4<>3
Cell Forcing Chain: Each candidate in  r8c8 true in turn will all lead to: r2c6<>5
3r8c8 - 3r8c7 = 3r2c7 - (3=125786)b2p123468 - (6=5)r2c3
4r8c8 - 4r1c8 = 4r1c2 - (4=81)r48c2 - 1r7c1 = 1r1c1 - (1=25783)b2p12368
7r8c8 - 7r79c9 = 7r1c9 - 7r2c78 = 7r2c6
9r8c8 - (9=134785)b8p346789
Cell Forcing Chain: Each candidate in  r8c8 true in turn will all lead to: r1c6<>7
3r8c8 - 3r8c7 = 3r2c7 - (3=7)r2c6
4r8c8 - 4r1c8 = 4r1c2 - (4=81)r48c2 - (1=7)r8c6
7r8c8 - 7r79c9 = 7r1c9
9r8c8 - (9=4)r8c4 - (4=13572)r12789c6
Region Forcing Chain: Each 7 in r8 true in turn will all lead to: r5c1<>6
7r8c3 - 7r5c3 = 7r5c1
(7-1)r8c6 = 1r7c6 - (1=46789)r34579c1 - (9=6)r6c2
7r8c7 - (7=296)r6c257
7r8c8 - 7r79c9 = 7r1c9 - (7=2581)b2p1238 - 1r2c4 = (1-6)r2c2 = 6r56c2
Region Forcing Chain: Each 6 in r7 true in turn will all lead to: r7c9<>5
(6-1)r7c1 = 1r8c2 - (1=5694)r1256c2 - (4=2)r1c8 - (2=5)r1c6 - 5r13c5 = 5r7c5
6r7c3 - (6=5)r2c3 - 5r2c8 = 5r9c8
6r7c9
Locked Candidates 2 (Claiming): 5 in r7 => r9c6<>5
Cell Forcing Chain: Each candidate in  r3c5 true in turn will all lead to: r7c6<>7
2r3c5 - (2=157894)r1c124569 - (4=81)r48c2 - (1=7)r8c6
5r3c5 - 5r7c5 = 5r7c6
8r3c5 - (8=1367)b2p1467
Cell Forcing Chain: Each candidate in  r9c5 true in turn will all lead to: r8c7<>7
3r9c5 - 3r4c5 = 3r4c8 - 3r8c8 = 3r8c7
7r9c5 - (7=564)r9c189 - (4=187)r8c236
8r9c5 - (8=2573)b2p2368 - 3r2c7 = 3r8c7
Cell Forcing Chain: Each candidate in  r7c9 true in turn will all lead to: r8c7<>9
6r7c9 - (6=35784)r9c45689 - (4=9)r8c4
7r7c9 - 7r1c9 = 7r1c5 - (7=3)r2c6 - 3r2c7 = 3r8c7
9r7c9
Cell Forcing Chain: Each candidate in  r8c8 true in turn will all lead to: r9c8<>7
3r8c8 - 3r45c8 = 3r5c9 - (3=5)r3c9 - 5r9c9 = 5r9c8
4r8c8 - (4=3792)r2678c7 - 7r6c7 = 7r6c8
7r8c8
9r8c8 - (9=3487)b8p4789
Region Forcing Chain: Each 6 in r7 true in turn will all lead to: r1c2<>5
6r7c1 - (6=4795)r7c3579 - 5r7c6 = 5r1c6
6r7c3 - (6=5)r2c3
6r7c9 - (6=5)r9c8 - 5r2c8 = 5r2c23
ALS Discontinuous Nice Loop: (8=19)r1c14 - (9=481)r148c2 - r2c2 = r2c4 - (1=8)r1c4 => r1c5<>8
Region Forcing Chain: Each 6 in r7 true in turn will all lead to: r2c4<>3
(6-1)r7c1 = 1r1c1 - (1=25783)b2p12368
6r7c3 - (6=5793)r2c3678
6r7c9 - (6=5)r9c8 - (5=793)r2c678
Sashimi Swordfish:3r248\c678 fr4c5 => r5c6<>3
Hidden Single: 3 in b5 => r4c5=3
X-Chain: 9r6c5 = r7c5 - r8c4 = r8c8 - r4c8 = 9r4c1 => r6c2<>9
Naked Single: r6c2=6
Hidden Pair: 36 in r5c8,r5c9 => r5c8<>29,r5c9<>9
Sashimi Swordfish:9c579\r267 fr1c9 => r2c8<>9
X-Chain: 9r6c5 = r7c5 - r8c4 = 9r8c8 => r6c8<>9
Discontinuous Nice Loop: 5r5c2 = r5c3 - (5=6)r2c3 - r2c4 = (6-3)r3c4 = r3c9 - r5c9 = (3-6)r5c8 = (6-5)r9c8 = r2c8 - r2c2 = 5r5c2 => r5c2=5
Locked Candidates 1 (Pointing): 9 in b4 => r1c1<>9
Naked Pair: in r1c1,r1c4 => r1c2<>1,
XY-Chain: (8=4)r4c2 - (4=9)r1c2 - (9=1)r2c2 - (1=8)r1c1 => r4c1<>8
Locked Candidates 2 (Claiming): 8 in c1 => r3c3<>8
Discontinuous Nice Loop: 1r1c1 = r1c4 - (1=6)r2c4 - (6=5)r2c3 - r2c8 = (5-6)r9c8 = r5c8 - (6=3)r5c9 - r3c9 = r3c4 - r9c4 = (3-4)r9c6 = r9c1 - (4=9)r4c1 - r4c8 = r6c7 - r2c7 = (9-1)r2c2 = 1r1c1 => r1c1=1
stte


ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby denis_berthier » Tue Feb 21, 2023 4:05 am

ghfick wrote:Here is the default path from YZF_Sudoku 625
Code: Select all
Memory Chain: Start From 4r1c1 causes 4 to disappear in Column 8 => r1c1<>4
4r1c1- r1c8(4=2) - 2r3(c7=c5) - 2r4(c5=c3) - 4r4(c3=c2) - 8r4(c2=c1) - r3c1(8=6) - 6b7(p17=p3) - 4c3(r7=r8) - 4c8(r8=.)


So, this is the new way my whips are plagiarised by yzf...: by changing their name and modifying the nrc-notation
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby denis_berthier » Tue Feb 21, 2023 4:10 am

.
Unfortunately for YZF..., this path is very far from optimal; its longest chain has length 13.
ZZF_Sudoku wrote:Discontinuous Nice Loop: 1r1c1 = r1c4 - (1=6)r2c4 - (6=5)r2c3 - r2c8 = (5-6)r9c8 = r5c8 - (6=3)r5c9 - r3c9 = r3c4 - r9c4 = (3-4)r9c6 = r9c1 - (4=9)r4c1 - r4c8 = r6c7 - r2c7 = (9-1)r2c2 = 1r1c1 => r1c1=1


CSP-Rules finds one of maximal length 9:
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1489  14589 3     ! 18    12578 1257  ! 6     24579 579   !
   ! 2     1569  56    ! 136   4     1357  ! 379   3579  8     !
   ! 468   7     4568  ! 368   2358  9     ! 234   1     35    !
   +-------------------+-------------------+-------------------+
   ! 489   489   248   ! 7     239   6     ! 5     239   1     !
   ! 679   569   2567  ! 1349  1239  1234  ! 8     2369  369   !
   ! 3     69    1     ! 5     29    8     ! 279   2679  4     !
   +-------------------+-------------------+-------------------+
   ! 1467  3     467   ! 2     1579  1457  ! 479   8     5679  !
   ! 5     148   478   ! 13489 6     1347  ! 3479  3479  2     !
   ! 4678  2     9     ! 348   3578  3457  ! 1     34567 3567  !
   +-------------------+-------------------+-------------------+
191 candidates.

hidden-pairs-in-a-block: b3{n2 n4}{r1c8 r3c7} ==> r3c7≠3, r1c8≠9, r1c8≠7, r1c8≠5
biv-chain[3]: c8n5{r9 r2} - r3c9{n5 n3} - c7n3{r2 r8} ==> r9c8≠3
z-chain[4]: c4n9{r8 r5} - r5n4{c4 c6} - c6n3{r5 r2} - c7n3{r2 .} ==> r8c4≠3
whip[4]: c6n2{r1 r5} - r5n4{c6 c4} - c4n1{r5 r8} - c4n9{r8 .} ==> r1c6≠1
t-whip[7]: r7n5{c6 c9} - c8n5{r9 r2} - r2c3{n5 n6} - r7n6{c3 c1} - c1n1{r7 r1} - r1c4{n1 n8} - c5n8{r3 .} ==> r9c5≠5
whip[8]: r5n5{c2 c3} - r2c3{n5 n6} - c2n6{r2 r6} - r5c1{n6 n7} - c1n9{r5 r1} - c1n1{r1 r7} - r7n6{c1 c9} - c9n9{r7 .} ==> r5c2≠9
t-whip[9]: r8n1{c6 c2} - c1n1{r7 r1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - r1c8{n4 n2} - c6n2{r1 r5} - r5n4{c6 c4} - r5n1{c4 .} ==> r7c5≠1
z-chain[3]: b8n1{r8c6 r8c4} - c4n9{r8 r5} - r5n4{c4 .} ==> r5c6≠1
whip[7]: c5n1{r5 r1} - b2n2{r1c5 r1c6} - r1n7{c6 c9} - r1n5{c9 c2} - r5c2{n5 n6} - r6c2{n6 n9} - r6c5{n9 .} ==> r5c5≠2
whip[9]: b7n1{r7c1 r8c2} - b1n1{r2c2 r1c1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - r1c8{n4 n2} - c6n2{r1 r5} - r4n2{c5 c3} - r4n4{c3 .} ==> r7c1≠4
whip[9]: c8n5{r9 r2} - r3c9{n5 n3} - c7n3{r2 r8} - c7n4{r8 r3} - c7n2{r3 r6} - r6n7{c7 c8} - r8c8{n7 n9} - c4n9{r8 r5} - b6n9{r5c8 .} ==> r9c8≠4
whip[8]: c4n4{r9 r5} - c4n9{r5 r8} - r8n1{c4 c2} - c1n1{r7 r1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - c8n4{r1 .} ==> r8c6≠4
whip[9]: r1c8{n4 n2} - r3n2{c7 c5} - r4n2{c5 c3} - r4n4{c3 c2} - r4n8{c2 c1} - r3c1{n8 n6} - b7n6{r9c1 r7c3} - c3n4{r7 r8} - c8n4{r8 .} ==> r1c1≠4
whip[6]: r8n8{c3 c4} - c4n9{r8 r5} - c5n9{r6 r7} - c9n9{r7 r1} - r1c1{n9 n1} - r1c4{n1 .} ==> r9c1≠8
whip[1]: r9n8{c5 .} ==> r8c4≠8
whip[7]: c4n9{r8 r5} - c5n9{r6 r7} - c9n9{r7 r1} - r2n9{c8 c2} - c2n1{r2 r1} - r1c1{n1 n8} - r1c4{n8 .} ==> r8c4≠1
whip[1]: b8n1{r8c6 .} ==> r2c6≠1
t-whip[9]: r8n1{c6 c2} - c1n1{r7 r1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - r1c8{n4 n2} - c6n2{r1 r5} - r5n4{c6 c4} - r9c4{n4 .} ==> r8c6≠3
whip[1]: r8n3{c8 .} ==> r9c9≠3
biv-chain[2]: r4n3{c5 c8} - c9n3{r5 r3} ==> r3c5≠3
z-chain[4]: c5n3{r5 r9} - r9n8{c5 c4} - c4n4{r9 r8} - c4n9{r8 .} ==> r5c4≠3
z-chain[7]: c4n9{r8 r5} - c9n9{r5 r1} - r2n9{c8 c2} - r2n1{c2 c4} - c4n6{r2 r3} - r3n3{c4 c9} - c7n3{r2 .} ==> r8c7≠9
whip[9]: b7n6{r9c1 r7c3} - r3n6{c3 c4} - r3n3{c4 c9} - r5c9{n3 n9} - b6n6{r5c9 r6c8} - r6n7{c8 c7} - r2c7{n7 n9} - b9n9{r7c7 r8c8} - c4n9{r8 .} ==> r5c1≠6
whip[9]: r6n6{c2 c8} - r5n6{c9 c3} - r3n6{c3 c4} - r3n3{c4 c9} - r5c9{n3 n9} - c4n9{r5 r8} - c8n9{r8 r2} - r2c7{n9 n7} - r6n7{c7 .} ==> r2c2≠6
whip[1]: c2n6{r6 .} ==> r5c3≠6
whip[9]: b7n1{r7c1 r8c2} - r2n1{c2 c4} - r2n6{c4 c3} - r7n6{c3 c9} - c1n6{r7 r9} - r3n6{c1 c4} - r3n3{c4 c9} - r5c9{n3 n9} - r5c1{n9 .} ==> r7c1≠7
whip[8]: c6n2{r1 r5} - r6c5{n2 n9} - r6c2{n9 n6} - r5c2{n6 n5} - r5c3{n5 n7} - b7n7{r8c3 r9c1} - c9n7{r9 r7} - c5n7{r7 .} ==> r1c6≠7
whip[8]: c4n9{r8 r5} - c9n9{r5 r1} - r1n7{c9 c5} - c5n5{r1 r3} - r1n5{c6 c2} - b1n9{r1c2 r2c2} - r6c2{n9 n6} - r5c2{n6 .} ==> r7c5≠9
hidden-single-in-a-block ==> r8c4=9
whip[5]: r7c5{n5 n7} - r1n7{c5 c9} - b3n5{r1c9 r2c8} - b3n9{r2c8 r2c7} - r7n9{c7 .} ==> r7c9≠5
whip[1]: b9n5{r9c9 .} ==> r9c6≠5
whip[6]: r9n5{c8 c9} - b9n6{r9c9 r7c9} - c9n7{r7 r1} - b3n5{r1c9 r2c8} - b3n9{r2c8 r2c7} - r7n9{c7 .} ==> r9c8≠7
whip[6]: r7c5{n5 n7} - r1n7{c5 c9} - r9n7{c9 c1} - r5c1{n7 n9} - r1n9{c1 c2} - r1n5{c2 .} ==> r3c5≠5
biv-chain[4]: r1n4{c2 c8} - r3c7{n4 n2} - r3c5{n2 n8} - r1c4{n8 n1} ==> r1c2≠1
biv-chain[4]: r5n4{c4 c6} - c6n2{r5 r1} - r3c5{n2 n8} - r9n8{c5 c4} ==> r9c4≠4
singles ==> r5c4=4, r5c5=1
biv-chain[3]: c3n2{r4 r5} - r5c6{n2 n3} - r4n3{c5 c8} ==> r4c8≠2
biv-chain[4]: r3n5{c3 c9} - c9n3{r3 r5} - r5c6{n3 n2} - r1c6{n2 n5} ==> r1c2≠5
biv-chain[4]: c4n6{r3 r2} - r2c3{n6 n5} - r3n5{c3 c9} - r3n3{c9 c4} ==> r3c4≠8
biv-chain[4]: r3n5{c3 c9} - r3n3{c9 c4} - c4n6{r3 r2} - r2n1{c4 c2} ==> r2c2≠5
singles ==> r5c2=5, r6c2=6
biv-chain[4]: c5n3{r9 r4} - r4n2{c5 c3} - r5c3{n2 n7} - c1n7{r5 r9} ==> r9c5≠7
naked-pairs-in-a-block: b8{r9c4 r9c5}{n3 n8} ==> r9c6≠3
hidden-pairs-in-a-column: c5{n5 n7}{r1 r7} ==> r1c5≠8, r1c5≠2
finned-x-wing-in-columns: n3{c6 c9}{r5 r2} ==> r2c8≠3, r2c7≠3
singles ==> r3c9=3, r3c4=6, r2c3=6, r3c3=5, r8c7=3
finned-x-wing-in-columns: n7{c5 c9}{r1 r7} ==> r7c7≠7
biv-chain[3]: r6n7{c7 c8} - r8c8{n7 n4} - r7c7{n4 n9} ==> r6c7≠9
biv-chain[3]: r7n1{c6 c1} - b7n6{r7c1 r9c1} - r9n4{c1 c6} ==> r7c6≠4
hidden-single-in-a-block ==> r9c6=4
biv-chain[3]: c8n6{r5 r9} - r9c1{n6 n7} - r5c1{n7 n9} ==> r5c8≠9
biv-chain[3]: r9c1{n6 n7} - r5c1{n7 n9} - r5c9{n9 n6} ==> r9c9≠6
biv-chain[3]: r7c3{n4 n7} - r9n7{c1 c9} - r8c8{n7 n4} ==> r8c2≠4, r8c3≠4, r7c7≠4
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby yzfwsf » Tue Feb 21, 2023 4:28 am

denis_berthier wrote:.
Unfortunately for YZF..., this path is very far from optimal; its longest chain has length 13.
[/code]

Hidden Single: 2 in r9 => r9c2=2
Hidden Single: 8 in c7 => r5c7=8
Locked Candidates 2 (Claiming): 4 in r4 => r5c1<>4,r5c2<>4,r5c3<>4
Locked Candidates 1 (Pointing): 7 in b4 => r5c8<>7,r5c9<>7
Hidden Pair: 24 in r1c8,r3c7 => r1c8<>579,r3c7<>3
AIC Type 2: 3r8c7 = r2c7 - (3=5)r3c9 - r2c8 = 5r9c8 => r9c8<>3
Almost Locked Set XZ-Rule: A=r1239c4 {13468},B=r2789c6 {13457}, X=4, Z=1 => r1c6<>1
Whip[4]: Supposing 3r8c4 would causes 9 to disappear in Column 4 => r8c4<>3
3r8c4 - 3c7(r8=r2) - 3c6(r2=r5) - 4r5(c6=c4) - 9c4(r5=.)
g-Whip[6]: Supposing 8r8c4 will result in all candidates in cell r1c4 being impossible => r8c4<>8
8r8c4 - 9c4(r8=r5) - 9c5(r6=r7) - 9c9(r7=r1) - 9r2(c8=c2) - 1r2(c2=c46) - r1c4(1=.)
Locked Candidates 2 (Claiming): 8 in r8 => r9c1<>8
Whip[7]: Supposing 5r9c5 would causes 8 to disappear in Box 8 => r9c5<>5
5r9c5 - 5r7(c6=c9) - 5r3(c9=c3) - r2c3(5=6) - 6r7(c3=c1) - 1c1(r7=r1) - r1c4(1=8) - 8b8(p7=.)
Whip[8]: Supposing 9r5c2 would causes 9 to disappear in Column 9 => r5c2<>9
9r5c2 - 5r5(c2=c3) - r2c3(5=6) - 6c2(r2=r6) - r5c1(6=7) - 9c1(r5=r1) - 1c1(r1=r7) - 6r7(c1=c9) - 9c9(r7=.)
Uniqueness Test 7: 56 in r25c23; 2*biCell + 1*conjugate pairs(5r5) => r2c2 <> 5
g-Whip[7]: Supposing 7r1c6 would causes 7 to disappear in Column 9 => r1c6<>7
7r1c6 - 2c6(r1=r5) - r6c5(2=9) - r6c2(9=6) - r5c2(6=5) - r5c3(5=7) - 7r8(c3=c78) - 7c9(r9=.)
Whip[7]: Supposing 9r8c7 would causes 3 to disappear in Column 7 => r8c7<>9
9r8c7 - 9r7(c9=c5) - 9c4(r8=r5) - 9c9(r5=r1) - 7r1(c9=c5) - 5c5(r1=r3) - r3c9(5=3) - 3c7(r2=.)
Whip[8]: Supposing 9r5c4 would causes 5 to disappear in Row 1 => r5c4<>9
9r5c4 - 9c5(r6=r7) - 9c9(r7=r1) - 7r1(c9=c5) - 5c5(r1=r3) - r3c9(5=3) - r5c9(3=6) - r5c2(6=5) - 5r1(c2=.)
Hidden Single: 9 in c4 => r8c4=9
Whip[7]: Supposing 1r5c6 would causes 2 to disappear in Column 6 => r5c6<>1
1r5c6 - 1r8(c6=c2) - 1r2(c2=c4) - r1c4(1=8) - 8c2(r1=r4) - 4c2(r4=r1) - r1c8(4=2) - 2c6(r1=.)
Whip[7]: Supposing 4r9c8 would causes 5 to disappear in Box 9 => r9c8<>4
4r9c8 - r1c8(4=2) - 2c7(r3=r6) - 7r6(c7=c8) - r8c8(7=3) - 3c7(r8=r2) - r3c9(3=5) - 5b9(p9=.)
Whip[6]: Supposing 4r8c6 would causes 4 to disappear in Column 8 => r8c6<>4
4r8c6 - 1r8(c6=c2) - 1c1(r7=r1) - r1c4(1=8) - 8c2(r1=r4) - 4c2(r4=r1) - 4c8(r1=.)
Whip[7]: Supposing 7r9c8 would causes 5 to disappear in Box 9 => r9c8<>7
7r9c8 - 7r6(c8=c7) - 2c7(r6=r3) - r1c8(2=4) - r8c8(4=3) - 3c7(r8=r2) - r3c9(3=5) - 5b9(p9=.)
Whip[7]: Supposing 5r7c9 will result in all candidates in cell r5c2 being impossible => r7c9<>5
5r7c9 - r9c8(5=6) - 6c9(r9=r5) - 9c9(r5=r1) - 7r1(c9=c5) - 5c5(r1=r3) - 5r1(c6=c2) - r5c2(5=.)
Locked Candidates 2 (Claiming): 5 in r7 => r9c6<>5
Whip[8]: Supposing 5r1c2 would causes 6 to disappear in Box 6 => r1c2<>5
5r1c2 - r5c2(5=6) - r6c2(6=9) - 9c1(r5=r1) - r1c9(9=7) - 7r2(c8=c6) - 5r2(c6=c8) - r9c8(5=6) - 6b6(p8=.)
Hidden Single: 5 in c2 => r5c2=5
Almost Locked Set XY-Wing: A=r1c124{1489}, B=r456c5{1239}, C=r3c13459{234568}, X,Y=4, 2, Z=1 => r1c5<>1
Whip[7]: Supposing 5r3c5 will result in all candidates in cell r2c2 being impossible => r3c5<>5
5r3c5 - 5r1(c6=c9) - 7r1(c9=c5) - r7c5(7=1) - 1c1(r7=r1) - 9r1(c1=c2) - r6c2(9=6) - r2c2(6=.)
Grouped Discontinuous Nice Loop: 1r5c5 = r5c4 - r12c4 = (1-7)r2c6 = (7-5)r1c5 = (5-1)r7c5 = 1r5c5 => r5c5=1
Locked Candidates 2 (Claiming): 1 in c4 => r2c6<>1
Grouped AIC Type 2: 3r4c8 = (3-9)r4c5 = (9-2)r6c5 = 2r6c78 => r4c8<>2
ALS AIC Type 1: (9=23476)r14568c8 - (6=39)b6p26 => r6c7<>9
ALS Discontinuous Nice Loop: 7r268c7 = r8c3 - (7=23469)r5c34689 - (9=3)r4c8 - (3=92)r46c5 - r3c5 = r3c7 - (2=7)r6c7 => r7c7<>7
Whip[6]: Supposing 3r8c8 will result in all candidates in cell r4c8 being impossible => r8c8<>3
3r8c8 - 3c7(r8=r2) - r3c9(3=5) - 5c3(r3=r2) - r2c6(5=7) - r2c8(7=9) - r4c8(9=.)
Sue de Coq: r56c8 - {23679} (b6p26 - {369}, r18c8 -{247}) => r2c8<>7
AIC Type 2: (5=2)r1c6 - r1c8 = r3c7 - (2=7)r6c7 - r2c7 = 7r1c9 => r1c9<>5
Locked Candidates 2 (Claiming): 5 in r1 => r2c6<>5
Uniqueness External Test 2/4: 57 in r17c56 => r7c6<>7
Grouped AIC Type 2: 7r1c9 = r1c5 - (7=3)r2c6 - r2c78 = (3-5)r3c9 = 5r9c9 => r9c9<>7
Grouped Discontinuous Nice Loop: 2r4c3 = r4c5 - r5c6 = (2-5)r1c6 = r1c5 - (5=7)r7c5 - r9c56 = r9c1 - r5c1 = (7-2)r5c3 = 2r4c3 => r4c3=2
Naked Pair: in r4c5,r4c8 => r4c1<>9,r4c2<>9,
WXYZ-Wing: 3679 in r5c139,r4c8,Pivot Cell Is r5c9 => r5c8<>9
AIC Type 1: (7=5)r7c5 - r7c6 = (5-2)r1c6 = r5c6 - (2=9)r6c5 - r6c2 = (9-7)r5c1 = 7r5c3 => r7c3<>7
Discontinuous Nice Loop: 7r5c3 = r8c3 - r8c8 = (7-6)r6c8 = r6c2 - (6=7)r5c3 => r5c3=7
Swordfish:7r268\c678 => r9c6<>7
Hidden Rectangle: 34 in r59c46 => r5c4 <> 3
Naked Single: r5c4=4
Discontinuous Nice Loop: 3r8c7 = (3-1)r8c6 = r8c2 - r2c2 = r2c4 - (1=8)r1c4 - (8=3)r9c4 - r9c9 = 3r8c7 => r8c7=3
Locked Pair: in r9c8,r9c9 => r7c9<>6,r9c1<>6,
Naked Pair: in r1c9,r2c7 => r2c8<>9,
Locked Candidates 2 (Claiming): 9 in c8 => r5c9<>9
Hidden Single: 9 in r5 => r5c1=9
Hidden Single: 6 in b4 => r6c2=6
2-String Kite: 3 in r3c9,r4c5 connected by b6p26 => r3c5 <> 3
Uniqueness External Test 3: 48 in r14c12 => r3c4<>8
Finned X-Wing:4c37\r37 fr8c3 => r7c1<>4
Finned Swordfish:4r148\c128 fr8c3 => r9c1<>4
Hidden Single: 4 in r9 => r9c6=4
Naked Single: r9c1=7
Hidden Pair: 57 in r1c5,r7c5 => r1c5<>28
X-Wing:2r15\c68 => r6c8<>2
Skyscraper : 3 in r2c6,r3c9 connected by r5c69 => r2c8,r3c4 <> 3
stte
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby denis_berthier » Tue Feb 21, 2023 4:50 am

.
Hi yzfwsf,
What point is your post supposed to make?
Why do whips appear as "whips" here but as "memory chains" in ghf*ck' s post?

Note that your new solution still has max length 13: 3+5+1+2+1+1
Code: Select all
ALS Discontinuous Nice Loop: 7r268c7 = r8c3 - (7=23469)r5c34689 - (9=3)r4c8 - (3=92)r46c5 - r3c5 = r3c7 - (2=7)r6c7 => r7c7<>7


As for the use of g-whips, which I hadn't activated in my first resolution path, it's a good idea. They allow a solution with chains of length ≤ 8 instead of 9:
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1489  14589 3     ! 18    12578 1257  ! 6     24579 579   !
   ! 2     1569  56    ! 136   4     1357  ! 379   3579  8     !
   ! 468   7     4568  ! 368   2358  9     ! 234   1     35    !
   +-------------------+-------------------+-------------------+
   ! 489   489   248   ! 7     239   6     ! 5     239   1     !
   ! 679   569   2567  ! 1349  1239  1234  ! 8     2369  369   !
   ! 3     69    1     ! 5     29    8     ! 279   2679  4     !
   +-------------------+-------------------+-------------------+
   ! 1467  3     467   ! 2     1579  1457  ! 479   8     5679  !
   ! 5     148   478   ! 13489 6     1347  ! 3479  3479  2     !
   ! 4678  2     9     ! 348   3578  3457  ! 1     34567 3567  !
   +-------------------+-------------------+-------------------+

191 candidates.

hidden-pairs-in-a-block: b3{n2 n4}{r1c8 r3c7} ==> r3c7≠3, r1c8≠9, r1c8≠7, r1c8≠5
biv-chain[3]: c8n5{r9 r2} - r3c9{n5 n3} - c7n3{r2 r8} ==> r9c8≠3
z-chain[4]: c4n9{r8 r5} - r5n4{c4 c6} - c6n3{r5 r2} - c7n3{r2 .} ==> r8c4≠3
whip[4]: c6n2{r1 r5} - r5n4{c6 c4} - c4n1{r5 r8} - c4n9{r8 .} ==> r1c6≠1
g-whip[6]: c4n9{r8 r5} - c5n9{r6 r7} - c9n9{r7 r1} - r2n9{c8 c2} - b1n1{r2c2 r1c123} - r1c4{n1 .} ==> r8c4≠8
whip[1]: b8n8{r9c5 .} ==> r9c1≠8
t-whip[7]: r7n5{c6 c9} - c8n5{r9 r2} - r2c3{n5 n6} - r7n6{c3 c1} - c1n1{r7 r1} - r1c4{n1 n8} - c5n8{r3 .} ==> r9c5≠5
whip[8]: r5n5{c2 c3} - r2c3{n5 n6} - c2n6{r2 r6} - r5c1{n6 n7} - c1n9{r5 r1} - c1n1{r1 r7} - r7n6{c1 c9} - c9n9{r7 .} ==> r5c2≠9
g-whip[7]: c6n2{r1 r5} - r6c5{n2 n9} - r6c2{n9 n6} - r5c2{n6 n5} - r5c3{n5 n7} - r8n7{c3 c789} - c9n7{r7 .} ==> r1c6≠7
t-whip[7]: r7n9{c9 c5} - c4n9{r8 r5} - c9n9{r5 r1} - r1n7{c9 c5} - c5n5{r1 r3} - r3c9{n5 n3} - c7n3{r2 .} ==> r8c7≠9
t-whip[8]: r8n1{c6 c2} - c1n1{r7 r1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - r1c8{n4 n2} - r1c6{n2 n5} - b8n5{r7c6 .} ==> r7c5≠1
z-chain[3]: b8n1{r8c6 r8c4} - c4n9{r8 r5} - r5n4{c4 .} ==> r5c6≠1
t-whip[8]: b8n1{r8c6 r8c4} - c4n9{r8 r5} - c5n9{r6 r7} - c9n9{r7 r1} - r1n7{c9 c5} - c5n5{r1 r3} - r1n5{c6 c2} - c2n1{r1 .} ==> r2c6≠1
whip[1]: c6n1{r8 .} ==> r8c4≠1
whip[8]: c4n9{r8 r5} - c9n9{r5 r1} - r1n7{c9 c5} - c5n5{r1 r3} - r1n5{c6 c2} - b1n9{r1c2 r2c2} - r6c2{n9 n6} - r5c2{n6 .} ==> r7c5≠9
hidden-single-in-a-block ==> r8c4=9
whip[5]: r7c5{n5 n7} - r1n7{c5 c9} - b3n5{r1c9 r2c8} - b3n9{r2c8 r2c7} - r7n9{c7 .} ==> r7c9≠5
whip[1]: b9n5{r9c9 .} ==> r9c6≠5
whip[6]: r9n5{c8 c9} - b9n6{r9c9 r7c9} - c9n7{r7 r1} - b3n5{r1c9 r2c8} - b3n9{r2c8 r2c7} - r7n9{c7 .} ==> r9c8≠7
whip[6]: r7c5{n5 n7} - r1n7{c5 c9} - r9n7{c9 c1} - r5n7{c1 c3} - c3n5{r5 r2} - b3n5{r2c8 .} ==> r3c5≠5
z-chain[4]: c5n5{r1 r7} - c5n7{r7 r9} - c5n8{r9 r3} - r1c4{n8 .} ==> r1c5≠1
hidden-single-in-a-column ==> r5c5=1
z-chain[3]: r4n3{c8 c5} - c5n9{r4 r6} - r6n2{c5 .} ==> r4c8≠2
whip[5]: r6n7{c7 c8} - b6n2{r6c8 r5c8} - c8n6{r5 r9} - c8n5{r9 r2} - c8n9{r2 .} ==> r6c7≠9
z-chain[6]: b2n5{r1c6 r2c6} - b2n7{r2c6 r1c5} - r1c9{n7 n9} - b1n9{r1c1 r2c2} - r6c2{n9 n6} - r5c2{n6 .} ==> r1c2≠5
whip[6]: r9n5{c8 c9} - b9n6{r9c9 r7c9} - c9n7{r7 r1} - b3n5{r1c9 r2c8} - b3n9{r2c8 r2c7} - r7n9{c7 .} ==> r9c8≠4
t-whip[6]: r8n1{c6 c2} - c1n1{r7 r1} - r1c4{n1 n8} - c2n8{r1 r4} - c2n4{r4 r1} - c8n4{r1 .} ==> r8c6≠4
g-whip[6]: c7n3{r8 r2} - r3c9{n3 n5} - r1n5{c9 c456} - r2c6{n5 n7} - r2c8{n7 n9} - r4c8{n9 .} ==> r8c8≠3
biv-chain[4]: r8c8{n7 n4} - r1c8{n4 n2} - c7n2{r3 r6} - b6n7{r6c7 r6c8} ==> r2c8≠7
biv-chain[4]: b3n7{r1c9 r2c7} - r6c7{n7 n2} - r3n2{c7 c5} - r1c6{n2 n5} ==> r1c9≠5
whip[1]: r1n5{c6 .} ==> r2c6≠5
t-whip[4]: b3n7{r1c9 r2c7} - r2c6{n7 n3} - b3n3{r2c7 r3c9} - c9n5{r3 .} ==> r9c9≠7
finned-x-wing-in-columns: n7{c9 c5}{r1 r7} ==> r7c6≠7
z-chain[5]: c9n7{r7 r1} - c5n7{r1 r9} - r9n8{c5 c4} - r1c4{n8 n1} - c1n1{r1 .} ==> r7c1≠7
t-whip[5]: c6n2{r5 r1} - c6n5{r1 r7} - r7c5{n5 n7} - r9n7{c6 c1} - r5n7{c1 .} ==> r5c3≠2
hidden-single-in-a-block ==> r4c3=2
naked-pairs-in-a-row: r4{c5 c8}{n3 n9} ==> r4c2≠9, r4c1≠9
biv-chain[3]: r5n2{c8 c6} - r6c5{n2 n9} - b4n9{r6c2 r5c1} ==> r5c8≠9
biv-chain[4]: c8n7{r8 r6} - r6n6{c8 c2} - b4n9{r6c2 r5c1} - c1n7{r5 r9} ==> r8c3≠7
finned-x-wing-in-rows: n7{r2 r8}{c6 c7} ==> r7c7≠7
swordfish-in-rows: n7{r2 r6 r8}{c6 c7 c8} ==> r9c6≠7
z-chain[4]: b7n7{r9c1 r7c3} - b7n6{r7c3 r7c1} - r3c1{n6 n8} - r4c1{n8 .} ==> r9c1≠4
whip[1]: r9n4{c6 .} ==> r7c6≠4
biv-chain[4]: r1c4{n8 n1} - c1n1{r1 r7} - r7c6{n1 n5} - r1n5{c6 c5} ==> r1c5≠8
biv-chain[4]: r1c8{n4 n2} - r1c6{n2 n5} - r7c6{n5 n1} - c1n1{r7 r1} ==> r1c1≠4
z-chain[4]: r4c2{n8 n4} - r8c2{n4 n1} - b1n1{r2c2 r1c1} - r1c4{n1 .} ==> r1c2≠8
biv-chain[3]: r4c1{n4 n8} - c2n8{r4 r8} - b7n1{r8c2 r7c1} ==> r7c1≠4
biv-chain[4]: c1n7{r9 r5} - c1n9{r5 r1} - r1n8{c1 c4} - b8n8{r9c4 r9c5} ==> r9c5≠7
singles ==> r9c1=7, r5c3=7, r5c2=5
whip[1]: r9n6{c9 .} ==> r7c9≠6
naked-pairs-in-a-column: c9{r1 r7}{n7 n9} ==> r5c9≠9
hidden-single-in-a-row ==> r5c1=9
naked-single ==> r6c2=6
whip[1]: b6n9{r6c8 .} ==> r2c8≠9
naked-pairs-in-a-block: b3{r2c8 r3c9}{n3 n5} ==> r2c7≠3
hidden-single-in-a-column ==> r8c7=3
naked-pairs-in-a-row: r1{c1 c4}{n1 n8} ==> r1c2≠1
hidden-pairs-in-a-column: c5{n5 n7}{r1 r7} ==> r1c5≠2
x-wing-in-columns: n2{c5 c7}{r3 r6} ==> r6c8≠2
finned-x-wing-in-rows: n3{r4 r2}{c8 c5} ==> r3c5≠3
biv-chain[3]: b7n1{r8c2 r7c1} - r1c1{n1 n8} - b4n8{r4c1 r4c2} ==> r8c2≠8
singles ==> r8c3=8, r4c2=8
naked-single ==> r4c1=4
biv-chain[3]: r5c4{n4 n3} - c5n3{r4 r9} - b8n8{r9c5 r9c4} ==> r9c4≠4
singles ==> r9c6=4, r5c4=4
finned-x-wing-in-columns: n3{c9 c6}{r5 r3} ==> r3c4≠3
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby yzfwsf » Tue Feb 21, 2023 4:58 am

denis_berthier wrote:.
Hi yzfwsf,
What point is your post supposed to make?
Why do whips appear as "whips" here but as "memory chains" in ghf*ck' s post?

For network reasons, I have not yet released an updated version of the program on Google Drive.
Because AIC I don't have a global search for the shortest chain, if I only activate whips then the solution path is as follows.
Code: Select all
Hidden Single: 2 in r9 => r9c2=2
Hidden Single: 8 in c7 => r5c7=8
Locked Candidates 2 (Claiming): 4 in r4 => r5c1<>4,r5c2<>4,r5c3<>4
Locked Candidates 1 (Pointing): 7 in b4 => r5c8<>7,r5c9<>7
Hidden Pair: 24 in r1c8,r3c7 => r1c8<>579,r3c7<>3
Whip[3]: Supposing 3r9c8 would causes 5 to disappear in Box 9 => r9c8<>3
3r9c8 - 3c7(r8=r2) - r3c9(3=5) - 5b9(p9=.)
Whip[4]: Supposing 1r1c6 would causes 1 to disappear in Column 4 => r1c6<>1
1r1c6 - 2c6(r1=r5) - 4r5(c6=c4) - 9c4(r5=r8) - 1c4(r8=.)
Whip[4]: Supposing 3r8c4 would causes 9 to disappear in Column 4 => r8c4<>3
3r8c4 - 3c7(r8=r2) - 3c6(r2=r5) - 4r5(c6=c4) - 9c4(r5=.)
g-Whip[6]: Supposing 8r8c4 will result in all candidates in cell r1c4 being impossible => r8c4<>8
8r8c4 - 9c4(r8=r5) - 9c5(r6=r7) - 9c9(r7=r1) - 9r2(c8=c2) - 1r2(c2=c46) - r1c4(1=.)
Locked Candidates 2 (Claiming): 8 in r8 => r9c1<>8
Whip[7]: Supposing 5r9c5 would causes 8 to disappear in Box 8 => r9c5<>5
5r9c5 - 5r7(c6=c9) - 5r3(c9=c3) - r2c3(5=6) - 6r7(c3=c1) - 1c1(r7=r1) - r1c4(1=8) - 8b8(p7=.)
Whip[8]: Supposing 9r5c2 would causes 9 to disappear in Column 9 => r5c2<>9
9r5c2 - 5r5(c2=c3) - r2c3(5=6) - 6c2(r2=r6) - r5c1(6=7) - 9c1(r5=r1) - 1c1(r1=r7) - 6r7(c1=c9) - 9c9(r7=.)
Uniqueness Test 7: 56 in r25c23; 2*biCell + 1*conjugate pairs(5r5) => r2c2 <> 5
g-Whip[7]: Supposing 7r1c6 would causes 7 to disappear in Column 9 => r1c6<>7
7r1c6 - 2c6(r1=r5) - r6c5(2=9) - r6c2(9=6) - r5c2(6=5) - r5c3(5=7) - 7r8(c3=c78) - 7c9(r9=.)
Whip[7]: Supposing 9r8c7 would causes 3 to disappear in Column 7 => r8c7<>9
9r8c7 - 9r7(c9=c5) - 9c4(r8=r5) - 9c9(r5=r1) - 7r1(c9=c5) - 5c5(r1=r3) - r3c9(5=3) - 3c7(r2=.)
Whip[8]: Supposing 9r5c4 would causes 5 to disappear in Row 1 => r5c4<>9
9r5c4 - 9c5(r6=r7) - 9c9(r7=r1) - 7r1(c9=c5) - 5c5(r1=r3) - r3c9(5=3) - r5c9(3=6) - r5c2(6=5) - 5r1(c2=.)
Hidden Single: 9 in c4 => r8c4=9
Whip[7]: Supposing 1r5c6 would causes 2 to disappear in Column 6 => r5c6<>1
1r5c6 - 1r8(c6=c2) - 1r2(c2=c4) - r1c4(1=8) - 8c2(r1=r4) - 4c2(r4=r1) - r1c8(4=2) - 2c6(r1=.)
Whip[7]: Supposing 4r9c8 would causes 5 to disappear in Box 9 => r9c8<>4
4r9c8 - r1c8(4=2) - 2c7(r3=r6) - 7r6(c7=c8) - r8c8(7=3) - 3c7(r8=r2) - r3c9(3=5) - 5b9(p9=.)
Whip[6]: Supposing 4r8c6 would causes 4 to disappear in Column 8 => r8c6<>4
4r8c6 - 1r8(c6=c2) - 1c1(r7=r1) - r1c4(1=8) - 8c2(r1=r4) - 4c2(r4=r1) - 4c8(r1=.)
Whip[7]: Supposing 7r9c8 would causes 5 to disappear in Box 9 => r9c8<>7
7r9c8 - 7r6(c8=c7) - 2c7(r6=r3) - r1c8(2=4) - r8c8(4=3) - 3c7(r8=r2) - r3c9(3=5) - 5b9(p9=.)
Whip[7]: Supposing 5r7c9 will result in all candidates in cell r5c2 being impossible => r7c9<>5
5r7c9 - r9c8(5=6) - 6c9(r9=r5) - 9c9(r5=r1) - 7r1(c9=c5) - 5c5(r1=r3) - 5r1(c6=c2) - r5c2(5=.)
Locked Candidates 2 (Claiming): 5 in r7 => r9c6<>5
Whip[8]: Supposing 5r1c2 would causes 6 to disappear in Box 6 => r1c2<>5
5r1c2 - r5c2(5=6) - r6c2(6=9) - 9c1(r5=r1) - r1c9(9=7) - 7r2(c8=c6) - 5r2(c6=c8) - r9c8(5=6) - 6b6(p8=.)
Hidden Single: 5 in c2 => r5c2=5
Whip[5]: Supposing 1r1c5 would causes 7 to disappear in Row 1 => r1c5<>1
1r1c5 - 1r5(c5=c4) - 4r5(c4=c6) - 2c6(r5=r1) - 5r1(c6=c9) - 7r1(c9=.)
Whip[7]: Supposing 5r3c5 will result in all candidates in cell r2c2 being impossible => r3c5<>5
5r3c5 - 5r1(c6=c9) - 7r1(c9=c5) - r7c5(7=1) - 1c1(r7=r1) - 9r1(c1=c2) - r6c2(9=6) - r2c2(6=.)
Whip[3]: Supposing 1r2c6 would causes 1 to disappear in Box 8 => r2c6<>1
1r2c6 - 7b2(p6=p2) - 5c5(r1=r7) - 1b8(p2=.)
Locked Candidates 1 (Pointing): 1 in b2 => r5c4<>1
Hidden Single: 1 in r5 => r5c5=1
Whip[3]: Supposing 2r4c8 would causes 2 to disappear in Row 6 => r4c8<>2
2r4c8 - 3r4(c8=c5) - 9c5(r4=r6) - 2r6(c5=.)
Whip[5]: Supposing 9r6c7 would causes 9 to disappear in Column 8 => r6c7<>9
9r6c7 - r4c8(9=3) - r5c9(3=6) - 6c8(r6=r9) - 5c8(r9=r2) - 9c8(r2=.)
Whip[6]: Supposing 3r8c8 will result in all candidates in cell r4c8 being impossible => r8c8<>3
3r8c8 - 3c7(r8=r2) - r3c9(3=5) - 5c3(r3=r2) - r2c6(5=7) - r2c8(7=9) - r4c8(9=.)
Sue de Coq: r56c8 - {23679} (b6p26 - {369}, r18c8 -{247}) =>  r2c8<>7
Whip[4]: Supposing 5r1c9 would causes 7 to disappear in Column 9 => r1c9<>5
5r1c9 - r1c6(5=2) - r1c8(2=4) - r8c8(4=7) - 7c9(r9=.)
Locked Candidates 2 (Claiming): 5 in r1 => r2c6<>5
Uniqueness External Test 2/4: 57 in r17c56 => r7c6<>7
Whip[4]: Supposing 7r9c9 would causes 5 to disappear in Column 9 => r9c9<>7
7r9c9 - 7r1(c9=c5) - r2c6(7=3) - 3r3(c5=c9) - 5c9(r3=.)
Whip[5]: Supposing 2r5c3 would causes 7 to disappear in Box 4 => r5c3<>2
2r5c3 - 2c6(r5=r1) - 5r1(c6=c5) - r7c5(5=7) - 7r9(c6=c1) - 7b4(p4=.)
Hidden Single: 2 in c3 => r4c3=2
Naked Pair: in r4c5,r4c8 => r4c1<>9,r4c2<>9,
WXYZ-Wing: 3679 in r5c139,r4c8,Pivot Cell Is r5c9 => r5c8<>9
Whip[3]: Supposing 7r8c3 would causes 7 to disappear in Column 8 => r8c3<>7
7r8c3 - r5c3(7=6) - 6r6(c2=c8) - 7c8(r6=.)
Swordfish:7r268\c678  => r7c7,r9c6<>7
Hidden Rectangle: 34 in r59c46 => r5c4 <> 3
Naked Single: r5c4=4
Whip[3]: Supposing 3r3c5 would causes 3 to disappear in Column 4 => r3c5<>3
3r3c5 - 3r4(c5=c8) - 3c9(r5=r9) - 3c4(r9=.)
Uniqueness External Test 3: 48 in r14c12 => r3c4<>8
Sue de Coq: r3c13 - {4568} (r2c3 - {56}, r3c57 -{248}) =>  r2c2<>6
Hidden Single: 6 in c2 => r6c2=6
Hidden Single: 9 in b4 => r5c1=9
Hidden Single: 7 in r5 => r5c3=7
Locked Candidates 1 (Pointing): 9 in b6 => r2c8<>9
Naked Pair: in r2c8,r3c9 => r2c7<>3,
Hidden Single: 3 in c7 => r8c7=3
Locked Pair: in r9c8,r9c9 => r7c9<>6,r9c1<>6,
Finned X-Wing:4c37\r37 fr8c3 => r7c1<>4
Finned Swordfish:4r148\c128 fr8c3 => r9c1<>4
Hidden Single: 4 in r9 => r9c6=4
Naked Single: r9c1=7
Hidden Pair: 57 in r1c5,r7c5 => r1c5<>28
X-Wing:2r15\c68  => r6c8<>2
Skyscraper : 3 in r2c6,r3c9 connected by r5c69 => r2c8,r3c4 <> 3
stte
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby denis_berthier » Tue Feb 21, 2023 5:15 am

yzfwsf wrote:
denis_berthier wrote:.
Hi yzfwsf,
What point is your post supposed to make?
Why do whips appear as "whips" here but as "memory chains" in ghf*ck' s post?

For network reasons, I have not yet released an updated version of the program on Google Drive.[/code]


I can't imagine where on Earth you live that you had a network fast enough to publish the original software and many updates, but not this particular update.
Plagiarism has no excuses. I thought this was clear from our previous discussion about it. I'm not asking much: respect the name their inventor gave these chains.
Or do I need to contact google for IP theft?
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby P.O. » Tue Feb 21, 2023 11:18 am

i can offert a resolution with templates, the puzzle is in 5-template:
Hidden Text: Show
Code: Select all
..3...6..2...4...8.7...9.1....7.65.1.........3.15.8..4.3.2...8.5...6...2..9...1..

#VT: (9 6 21 29 20 16 24 14 26)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (37 38 39) nil nil (44 45) nil nil
2
#VT: (7 6 21 19 20 16 24 14 26)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(6) nil nil nil nil nil nil nil nil
2 3
#VT: (7 6 12 18 14 16 21 14 23)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil (25 67) nil (8) nil (8) nil (8)
2 3
#VT: (7 6 12 18 14 16 21 14 22)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil (70)
2 3 4
#VT: (7 6 10 13 14 16 19 12 19)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil (80) (69 80) nil nil (80) nil nil
2 3 4
#VT: (7 6 10 13 14 14 18 12 18)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil (37) nil nil nil
2 3 4
#VT: (7 6 10 12 14 14 18 12 18)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2 3 4 5
#VT: (3 6 6 8 8 8 9 8 6)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(2 5 15 40 67) nil (23 40 69 81) (60 67 73) (63 77 78) (11 39) (6 17) (67 73) (17 29 32 41 45 47 53)
EraseCC: ( n6r6c2   n9r8c4   n4r5c4   n4r9c6   n9r6c5 )

#VT: (3 6 6 8 8 8 9 8 9)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2
#VT: (3 4 2 5 8 6 8 7 9)
Cells: nil nil (27 70) nil nil nil nil nil nil
SetVC: ( n3r3c9   n6r5c9   n3r8c7   n5r2c8   n6r9c8   n6r2c3
         n7r9c1   n5r9c9   n9r5c1   n5r5c2   n4r7c3   n8r8c3
         n5r3c3   n2r4c3   n3r4c5   n9r4c8   n7r5c3   n1r8c2
         n7r8c6   n4r8c8   n8r9c5   n2r1c8   n9r2c2   n3r2c6
         n7r2c7   n2r3c5   n4r3c7   n1r5c5   n2r5c6   n3r5c8
         n2r6c7   n7r6c8   n6r7c1   n5r7c5   n1r7c6   n9r7c7
         n7r7c9   n3r9c4   n7r1c5   n5r1c6   n9r1c9   n1r2c4
         n8r3c1   n6r3c4   n4r4c1   n8r4c2   n1r1c1   n4r1c2
         n8r1c4 )
1 4 3   8 7 5   6 2 9
2 9 6   1 4 3   7 5 8
8 7 5   6 2 9   4 1 3
4 8 2   7 3 6   5 9 1
9 5 7   4 1 2   8 3 6
3 6 1   5 9 8   2 7 4
6 3 4   2 5 1   9 8 7
5 1 8   9 6 7   3 4 2
7 2 9   3 8 4   1 6 5

the lowest number of combinations of 5 templates i found is 9:
Hidden Text: Show
Code: Select all
(1 2 4 7 9) (1 4 6 8 9) (2 3 4 5 7) (2 5 6 7 9) (2 4 5 7 8) (1 2 5 7 8) (1 3 4 8 9) (1 3 6 7 9) (1 4 6 7 9))
         
#VT: (9 6 21 29 20 16 24 14 26)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (37 38 39) nil nil (44 45) nil nil

1489   14589  3      18     12578  1257   6      24579  579             
2      1569   56     136    4      1357   379    3579   8               
468    7      4568   368    2358   9      234    1      35             
489    489    248    7      239    6      5      239    1               
679    569    2567   1349   1239   1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    13489  6      1347   3479   3479   2               
4678   2      9      348    3578   3457   1      34567  3567           


1: (1 2 4 7 9)
#VT: (7 6 21 17 20 16 22 14 23)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(6) nil nil nil nil nil (8) nil (8)

1489   14589  3      18     12578  257    6      245    579             
2      1569   56     136    4      1357   379    3579   8               
468    7      4568   368    2358   9      234    1      35             
489    489    248    7      239    6      5      239    1               
679    569    2567   1349   1239   1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    13489  6      1347   3479   3479   2               
4678   2      9      348    3578   3457   1      34567  3567           


2: (1 4 6 8 9)
#VT: (7 6 21 14 20 15 22 13 16)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (67 69) nil nil nil nil (41)

1489   14589  3      18     12578  257    6      245    579             
2      1569   56     136    4      1357   379    3579   8               
468    7      4568   368    2358   9      234    1      35             
489    489    248    7      239    6      5      239    1               
679    569    2567   1349   123    1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    1389   6      137    3479   3479   2               
4678   2      9      348    3578   3457   1      34567  3567           


3: (2 3 4 5 7)
#VT: (7 6 13 14 14 15 21 13 16)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil (25) nil (8) nil nil nil nil

1489   14589  3      18     12578  257    6      24     579             
2      1569   56     136    4      1357   379    3579   8               
468    7      4568   368    2358   9      24     1      35             
489    489    248    7      239    6      5      239    1               
679    569    2567   1349   123    1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    1389   6      137    3479   3479   2               
4678   2      9      348    3578   3457   1      34567  3567           


4: (2 5 6 7 9)
#VT: (7 5 13 14 11 14 13 13 11)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil (35) nil nil nil nil (17 80) nil (70)

1489   14589  3      18     12578  257    6      24     579             
2      1569   56     136    4      1357   379    359    8               
468    7      4568   368    2358   9      24     1      35             
489    489    248    7      239    6      5      39     1               
679    569    2567   1349   123    1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    1389   6      137    347    3479   2               
4678   2      9      348    3578   3457   1      3456   3567           


5: (2 4 5 7 8)
#VT: (7 5 13 11 11 14 13 10 11)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (30 80) nil nil nil nil nil

1489   14589  3      18     12578  257    6      24     579             
2      1569   56     136    4      1357   379    359    8               
468    7      4568   368    2358   9      24     1      35             
489    489    28     7      239    6      5      39     1               
679    569    2567   1349   123    1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    1389   6      137    347    3479   2               
4678   2      9      348    3578   3457   1      356    3567           


6: (1 2 5 7 8)
#VT: (6 5 13 11 11 14 13 10 11)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(5) nil nil nil nil nil nil nil nil

1489   14589  3      18     2578   257    6      24     579             
2      1569   56     136    4      1357   379    359    8               
468    7      4568   368    2358   9      24     1      35             
489    489    28     7      239    6      5      39     1               
679    569    2567   1349   123    1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    1389   6      137    347    3479   2               
4678   2      9      348    3578   3457   1      356    3567           


7: (1 3 4 8 9)
#VT: (4 5 7 11 11 14 13 9 9)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(15 40 67) nil (23 40 41 67) nil nil nil nil nil (29)

1489   14589  3      18     2578   257    6      24     579             
2      1569   56     136    4      357    379    359    8               
468    7      4568   368    258    9      24     1      35             
489    48     28     7      239    6      5      39     1               
679    569    2567   49     12     1234   8      2369   369             
3      69     1      5      29     8      279    2679   4               
1467   3      467    2      1579   1457   479    8      5679           
5      148    478    89     6      137    347    3479   2               
4678   2      9      348    3578   3457   1      356    3567           


8: (1 3 6 7 9)
#VT: (3 5 2 11 11 2 6 9 4)
Cells: nil nil (32 70) nil nil (47) nil nil nil
SetVC: ( n3r4c5   n9r4c8   n6r6c2   n3r8c7   n2r4c3   n9r8c4
         n9r6c5   n4r5c4 )

#VT: (3 3 3 9 11 8 6 9 3)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(2) (44) nil (55) nil nil (55 60) nil nil

1489  4589  3     18    2578  257   6     24    579           
2     159   56    136   4     357   79    35    8             
468   7     4568  368   258   9     24    1     35             
48    48    2     7     3     6     5     9     1             
79    59    57    4     12    12    8     36    36             
3     6     1     5     9     8     27    27    4             
16    3     467   2     157   145   479   8     5679           
5     148   478   9     6     17    3     47    2             
4678  2     9     38    578   3457  1     56    567           


9: (1 4 6 7 9)
#VT: (3 3 3 5 11 4 2 9 3)
Cells: nil nil nil nil nil nil (39 73) nil nil
SetVC: ( n7r5c3   n7r9c1   n9r5c1   n5r5c2   n4r9c6   n3r9c4
         n3r2c6   n7r2c7   n8r9c5   n9r7c7   n9r1c9   n9r2c2
         n5r2c8   n3r3c9   n6r5c9   n2r6c7   n7r6c8   n4r8c8
         n6r9c8   n5r9c9   n2r1c8   n6r2c3   n1r2c4   n4r3c7
         n3r5c8   n4r7c3   n7r7c9   n8r8c3   n8r1c4   n8r3c1
         n5r3c3   n6r3c4   n2r3c5   n4r4c1   n8r4c2   n1r5c5
         n2r5c6   n5r7c5   n1r7c6   n1r8c2   n7r8c6   n1r1c1
         n4r1c2   n7r1c5   n5r1c6   n6r7c1 )
1 4 3   8 7 5   6 2 9
2 9 6   1 4 3   7 5 8
8 7 5   6 2 9   4 1 3
4 8 2   7 3 6   5 9 1
9 5 7   4 1 2   8 3 6
3 6 1   5 9 8   2 7 4
6 3 4   2 5 1   9 8 7
5 1 8   9 6 7   3 4 2
7 2 9   3 8 4   1 6 5
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby eleven » Tue Feb 21, 2023 12:37 pm

denis_berthier wrote:Plagiarism has no excuses. I thought this was clear from our previous discussion about it. I'm not asking much: respect the name their inventor gave these chains.
Or do I need to contact google for IP theft?

Naming confusion is an old tradition in the history of sudoku techniques, a couple of the same techniques have got different names, because they were found (independently) by different people.
In this case there is no doubt, that you introduced the whips, but "memory chains" became a second name for them a long time ago. This simply explains, how they work. I would not call them a genious invention, because it is, what you get, if you click on a digit in a simple solver, and sequentially follow the consequences. Who has not NOT done that in the sudoku live ?
So i think to call it plagiarism is totally exaggerated here.
I also want to repeat my criticism of the notation, which does not show, which of the former nodes you have to remember to get to the conclusion.
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby denis_berthier » Tue Feb 21, 2023 2:00 pm

eleven wrote:
denis_berthier wrote:Plagiarism has no excuses. I thought this was clear from our previous discussion about it. I'm not asking much: respect the name their inventor gave these chains.
Or do I need to contact google for IP theft?

Naming confusion is an old tradition in the history of sudoku techniques, a couple of the same techniques have got different names, because they were found (independently) by different people.
In this case there is no doubt, that you introduced the whips, but "memory chains" became a second name for them a long time ago. This simply explains, how they work. I would not call them a genious invention, because it is, what you get, if you click on a digit in a simple solver, and sequentially follow the consequences. Who has not NOT done that in the sudoku live ?
So i think to call it plagiarism is totally exaggerated here.
I also want to repeat my criticism of the notation, which does not show, which of the former nodes you have to remember to get to the conclusion.


There is no name confusion. "Memory chains" didn't become a second name for whips... a long time ago to explain how they work. This name was deliberately introduced by people who wanted to obliterate my work (the AIC clique), exactly as you are trying to do here.
Why am I not surprised? You have been a systematic opponent for years (with never any rational argument) and therefore your opinion is worthless. Are you not aware that this forum has changed and the behaviour of the ronk's and c° is outdated?

Bivalue-chains, z-chains, t-whips, whips, g-whips, S-whips... form whole families of different chains; they are much more than the vague T&E procedure that you describe. In particular they have an original definition of length inherently associated with them. They allow proving theorems - which has never been done with any other chains. You know all this and you can only discredit yourself by denying it.

As for the notation, your remark proves once more that you don't understand what you're talking about: BY DEFINITION, z- and t- candidates don't belong to my chains AND they don't need to be remembered. We have talked about this many times, but you keep repeating the same absurd lies. Can't you read a definition?

Like it or not, mentioning something with a different name that hides the real inventor IS plagiarism. Any teacher, at any level of the education system, knows this.
The question everyone should ask yzfswf is, why are all the other patterns given their original name (including all those that could also fall under the vague name of "memory chain"), but not mine?
.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Figure 1.3 from "The Logic Of Sudoku" by Andrew Stuart

Postby ghfick » Tue Feb 21, 2023 4:38 pm

Thank you to P.O. for his post using Templates. I need to learn more about Templates.

My full name is Gordon Hilton Fick. Hilton has Irish heritage on my mother's side and Fick has German heritage on my father's side. I have used ghfick as my handle since the very beginnings of what we now call email back in the 1970's.

I have received childish insults about my proud Fick surname my whole life.

In a recent post, d****s_b******r refers to my forum handle as ghf*ck. I guess he thinks he is original, funny, smart and worthy.

As far as I am concerned, d****s_b******r is "Dennis The Menace". I think this is an apt naming from the comic strip and TV shows.
His insults deserve insults right back at him.

He also incorrectly describes me as a "Windows-only user" when he knows very well that I abandoned MSWindows many years ago. He gets to make countless errors himself but jumps all over people for not anointing him with genius status.

Stormdoku is written in Turbo Pascal and the code is posted. Someone who understands Pascal could edit the MSWindows specific code to run on any OS. It may be a big job to carry out such a revision though.

Dennis The Menace has totally abducted this forum. Every post has to be about him.

How many people on this forum will defend Dennis The Menace now?

Very Best Wishes to all my Sudoku friends
Gordon
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Next

Return to Puzzles