daj95376 wrote : For (9), my solver allows the discontinuous loop: (9)r5c7 - r6c9 = r6c2 - r5c3 = (9)r5c7 ... to force target cell r5c7 true when (9) is true in the base cells.
*** ux_nono = <7>
### -1479- QExocet Base = r6c89 Target = r4c2,r5c5==r4c3
+---------------------+-----------------------+--------------------+
| 5 13489 123489 | 1236 12346 136 | 2368 7 1246 |
| 6 7 12348 | 1235 9 135 | 2358 12345 1245 |
| 234 134 1234 | 123567 123467 8 | 2356 12345 9 |
+---------------------+-----------------------+--------------------+
| 2349 3459 7 | 1359 8 1359 | 259 6 125 |
| 1 3569 359 | 35679 367 2 | 4 8 57 |
| 29 5689 2589 | 4 167 15679 | 2579 125 3 |
+---------------------+-----------------------+--------------------+
| 379 1359 1359 | 123679 12367 4 | 23567 235 8 |
| 3479 2 3459 | 36789 367 3679 | 1 345 4567 |
| 8 134 6 | 1237 5 137 | 237 9 247 |
+---------------------+-----------------------+--------------------+
Blue wrote:Is this what you're looking for ?
David P Bird wrote:Did you find it or compose it?
V V V
*--------------------------------------------------------------------------------*
| 23789 56 2789 | 346789 789 3469 | 29 45 1 |
| 1 56 789 | 46 789 2 | 78 3 45 |
| 23789 237 4 | 3789 5 1 | 6 29 78 |
|--------------------------+--------------------------+--------------------------|
| 4 8 1 | 239 6 39 | 5 7 239 |
| 237 237 5 | 239 1 8 | 4 29 6 |
| 23 9 6 | 5 4 7 | 1 8 23 |
|--------------------------+--------------------------+--------------------------|
|B2789 B27 3 | 1 2789 46 | 2789 456 45 |
| 5 1 2789 | 46789 T78-29 469 | 3 46 29 |
| 6 4 2789 | 789 3 5 |T2789 1 78 |
*--------------------------------------------------------------------------------*
Leren wrote:Hi Danny - thanks for the explanation. You don't say when you use your full template analysis instead of a simple chain (as you showed for the 9 in the first Exocet) to prove a digit True in both target cells. ie do you always use your template analysis and then look for a simple chain as a simpler explanation for the template analysis result (to answer questions from simpleton's like me) ?
For example, in the second Exocet, it's obvious that if 7 is in 1 target cell it must be in the other target cell, so can be removed from the base and target cell, but did you actually find it via templates ?
7 has 2 truths in the cross lines so I wouldn't have checked that it must occupy both Target cells - something for me to add to my solver.
V V V
*--------------------------------------------------------------------------------*
| 23789 56 2789 | 346789 789 3469 | 29 45 1 |
| 1 56 789 | 46 789 2 | 78 3 45 |
| 23789 237 4 | 3789 5 1 | 6 29 78 |
|--------------------------+--------------------------+--------------------------|
| 4 8 1 | 239 6 39 | 5 7 239 |
| 237 237 5 | 239 1 8 | 4 29 6 |
| 23 9 6 | 5 4 7 | 1 8 23 |
|--------------------------+--------------------------+--------------------------|
|B2789 B27 3 | 1 2789 46 | 2789 456 45 |
| 5 1 2789 | 46789 T2789 469 | 3 46 29 |
| 6 4 2789 | 789 3 5 |T2789 1 78 |
*--------------------------------------------------------------------------------*
Leren wrote:Is this new ? At least it's new for me.
2r7c12 - r7c5 = 2r8c5
2r7c12 - r89c3 = r1c3 - r17c7 = 2r9c7
*** value = <2> true locks cells true: r9c3 must be true
*** value = <4> true locks cells true: r7c6
*** value = <6> true locks cells true: r7c6
*** value = <9> true locks cells true: r7c6,r9c3 eliminate in base/target/secondary cells
### -2469- QExocet Base = r8c89 Target = r7c6,r9c3==r7c5
*** value = <2> true locks cells true: r5c8 must be true
*** value = <7> true locks cells true: r9c9
*** value = <8> true locks cells true: r9c9
*** value = <9> true locks cells true: r5c8,r9c9 eliminate in base/target/secondary cells
### -2789- QExocet Base = r12c7 Target = r5c8==r8c9,r9c9
*** value = <2> true locks cells true: r5c8 must be true
*** value = <7> true locks cells true: r2c7
*** value = <8> true locks cells true: r2c7
*** value = <9> true locks cells true: r2c7,r5c8 eliminate in base/target/secondary cells
### -2789- QExocet Base = r89c9 Target = r5c8==r1c7,r2c7