ronk wrote:If the only premise is the existence of two almost 0-rank multi-fish, we don't even know if ... if ... if one of the PEs is an invalid exclusion in each case. What are your other premises?
I'm using the MSLSs produced by multi-fish for my analysis. This is one of the Almost MSLSs for the Golden Nugget:
.......39.....1..5..3.5.8....8.9...6.7...2...1..4.......9.8..5..2....6..4..7..... 47 Golden Nugget
- Code: Select all
*-------------------------*-------------------------*-------------------------*
568 | (25678) (14568) 1247-56 | (268) 247-6 (4678) | 1247 3 9 |
| 689-27 689-4 2467 | 3689-2 23467 1 | 247 2467 5 |
69 | (2679) (1469) 3 | (269) 5 (4679) | 8 1247-6 1247 |
*-------------------------*-------------------------*-------------------------*
35 | (235) (345) 8 | (135) 9 (357) | 1247-35 1247 6 |
| 3569 7 456 | 3568-1 136 2 | 13459 1489 1348 |
| 1 3569 256 | 4 367 3568-7 | 23579 2789 2378 |
*-------------------------*-------------------------*-------------------------*
36 | (367) (136) 9 | (1236) 8 (346) | 1247-3 5 1247-3 |
| 358-7 2 157 | 359-1 134 359-4 | 6 14789 13478 |
| 4 3568-1 156 | 7 1236 3569 | 1239 1289 1238 |
*-------------------------*-------------------------*-------------------------*
27 14 12 47
PEs = 18 candidates in 14 cells
The 16 A-MSLS cells are shown bracketed. 16 out of the 17 constrained candidates must be true in these cells and the one that isn't must be true in just one of the PE cells. This means that 17 out of the 18 PEs are valid eliminations.
Now here's the extra premise you might be considering: for this inference to be sound none of the candidates in the pattern can be covered more than once. (The way I work this is always the case.) I haven't analysed the more exotic almost 0-rank scenarios that can be reached using Xsudo.
[Edit] references to "1-rank" patterns changed to "almost 0-rank" patterns at ronk's request.