Pjb's puzzle is an interesting case of a multi-fish with only 3 digits (125) in the focus digit set rather than the usual 4
- Code: Select all
Rows *-------------------------*-------------------------*-------------------------* Boxes
. | 468-25 2458 469-2 | 1256 12569 3 | 4789-15 145 4789-15 | 25 - -
. | 1 458 3469 | 56 569 7 | 2 345 489-5 | - . -
39 | 235 7 239 | 125 8 4 | 1359 6 159 | - - 15
*-------------------------*-------------------------*-------------------------*
. | 457 15-4 8 | 1256 12567 1256 | 145 9 3 | . - -
. | 25 6 12 | 3 4 9 | 158 7 158 | - . -
. | 9 3 147 | 8 157 15 | 6 2 145 | - - .
*-------------------------*-------------------------*-------------------------*
46 | 246 9 1246 | 7 3 125-6 | 145 8 1456 | 12 - -
. | 34678 148 5 | 9 16 168 | 347-1 134 2 | - . -
. | 3678-2 128 367-12 | 4 1256 12568 | 379-15 135 679-15 | - - 15
*-------------------------*-------------------------*-------------------------*
Colms . 48 . . . . . 34 .
Multi-sector Locked Set:(39)r3,(46)r7,(48)c2,(34)c8,(25)b1,(15)b3,(12)b7,(15)b9 18 Eliminations in 12 cells
Although (7) is in the complementary set, the givens for it at r3c2, r5c8, & r7c4 effectively eliminate it from consideration. This suggests that for the truth balancing approach I use, adding it to the focus set to give (1257) would also produce a balance, but it doesn't!
I've mentioned somewhere before that one of my colouring schemes identifies intersecting mini-lines that hold 5 candidates (ie AAHSs). These abound in this puzzle, but it identifies r37c28 as worthy of checking as all these intersection cells hold singles.
From my POV, given
<here>, this is therefore a Multi-fish that can be expressed as a hidden pair loop and is therefore an SK loop.