Previous posts :
I and
II1. The structure of Jellyfishes of cells in boxes : ALS XY-RingThe simplest one : the XY-Ring in 4 boxes
- Code: Select all
+----------+----------+
| xa . . | ya . . |
| . . . | . . . |
| . . . | . . . |
+----------+----------+
| xb . . | yb . . |
| . . . | . . . |
| . . . | . . . |
+----------+----------+
Loop : (x=a)-(a=y)-(y=b)-(b=x) :=> eliminations in rows and columns
|
V
The most general one : the ALS XY-Ring
- Code: Select all
+-------------+-------------+
| XA. A. A. | YA. A. A. |
| X. . . | Y. . . |
| X. . . | Y. . . |
+-------------+-------------+
| XB. B. B. | YB. B. B. |
| X. . . | Y. . . |
| X. . . | Y. . . |
+-------------+-------------+
where each of X,Y,A,B is either a single digit or a set of at least 2 digits
and the "5 cells" in each box is a Locked Subset in absence of one of the "letter"
enabling to "write"
Loop : (X=A)-(A=Y)-(Y=B)-(B=X) :=> eliminations in rows, columns and boxes
or, if the notation looks too odd, enabling eliminations according to the solutions
- Code: Select all
+------------+------------+ +------------+-----------+
| A. A. A. | Y. . . | | X. . . | A. A. A |
| . . . | Y. . . | | X. . . | . . . |
| . . . | Y. . . | | X. . . | . . . |
+------------+------------+ and +------------+-----------+
| X. . . | B. B. B. | | B. B. B. | Y. . . |
| X. . . | . . . | | . . . | Y. . . |
| X. . . | . . . | | . . . | Y. . . |
+-------------+-----------+ +------------+-----------+
2. Two further examples of application2a. From "66 An Easy Monster, 9 Truth Loop &&" in xsudon.sud.2.9...76.......49.....3.28.4.7...6...8...7..1...5..............6.4....7..3.156..
There is a 5x5 square matrix of cells at the intersection of R12478 and C13567, as it is shown below.
- Code: Select all
+--------------------------+--------------------------+---------------------+
| (3458 ) 2 (145 ) | 9 (48 ) (148 ) | (135 ) 7 6 |
| (35678) 13578 (1567 ) | 12568 (2678 ) (12678) | (135 ) 4 9 |
| 45679 1579 145679 | 156 467 3 | 15 2 8 |
+--------------------------+--------------------------+---------------------+
| (2359 ) 4 (259 ) | 7 (2389 ) (1289 ) | (289 ) 6 1235 |
| 23569 359 8 | 1236 23469 12469 | 7 1359 12345 |
| 1 379 2679 | 2368 5 24689 | 249 389 234 |
+--------------------------+--------------------------+---------------------+
| (24589) 1589 (12459 ) | 2368 (236789) (26789) | (2489) 135 135 |
| (2589 ) 6 (1259 ) | 4 (2389 ) (289 ) | (289 ) 135 7 |
| 24789 789 3 | 28 1 5 | 6 89 24 |
+--------------------------+--------------------------+---------------------+
Inside that matrix, the most interesting pattern lies at the intersection of R148 and C567.
Excluding the cell 1N7, the other 8 cells would reduce to 3 locked sets for the digits 48,289,289 in R148, respectively, if there were no candidates for the digits 1 and 3.
Therefore, the set of cells 1N56,4N567,8N567 is a Rank 2 pattern as it is covered by 48R1, 289R4, 289R8 and 3C5 and 1C6.
Adding the 6 cells 148N13 to the pattern yields a Rank 0 Pattern as they are already covered by the previous cover and by 35C1 and 15C3.
- Code: Select all
+---------------------------+--------------------------+---------------------+
| (35 48 ) 2 (15 4) | 9 (48 ) ( 48 1) | (135 ) 7 6 |
| (35678 ) 13578 (1567 ) | 12568 (2678 ) (12678) | (135 ) 4 9 |
| 45679 1579 145679 | 156 467 3 | 15 2 8 |
+---------------------------+--------------------------+---------------------+
| (35 29 ) 4 ( 5 29) | 7 (289 3) (289 1) | (289 ) 6 1235 |
| 23569 359 8 | 1236 23469 12469 | 7 1359 12345 |
| 1 379 2679 | 2368 5 24689 | 249 389 234 |
+---------------------------+--------------------------+---------------------+
| (24589 ) 1589 (12459 ) | 2368 (236789) (26789) | (2489) 135 135 |
| ( 5 289) 6 (15 29) | 4 (289 3) (289 ) | (289 ) 135 7 |
| 24789 789 3 | 28 1 5 | 6 89 24 |
+---------------------------+--------------------------+---------------------+
This loop all cells can be viewed as the Swordfish of Cells
- Code: Select all
354 154 84
352 52 382
59 159 389
to which cells has been added in the 3 rows.
The eliminations are then easily determined.
- Code: Select all
+------------------------+------------------------+--------------------+
| (3458) 2 (145) | 9 (48) (148) | 135 7 6 |
| 678-35 13578 67-15 | 12568 2678 2678-1 | 135 4 9 |
| 4679-5 1579 4679-15 | 156 467 3 | 15 2 8 |
+------------------------+------------------------+--------------------+
| (2359) 4 (259) | 7 (2389) (1289) | (289) 6 135-2 |
| 269-35 359 8 | 1236 2469-3 2469-1 | 7 1359 12345 |
| 1 379 2679 | 2368 5 24689 | 249 389 234 |
+------------------------+------------------------+--------------------+
| 2489-5 1589 249-15 | 2368 26789-3 26789 | 2489 135 135 |
| (2589) 6 (1259) | 4 (2389) (289) | (289) 135 7 |
| 24789 789 3 | 28 1 5 | 6 89 24 |
+------------------------+------------------------+--------------------+
An Easy Monster [23,219] 46 Candidates, Loop All Cells
14 Truths = {1N1356 4N13567 8N13567}
14 Links = {2r48 4r1 8r148 9r48 1c36 3c15 5c13}17 Eliminations --> r2357c1<>5, r237c3<>1, r237c3<>5, r5c15<>3, r25c6<>1, r2c1<>3, r4c9<>2, r7c5<>3
As there is no box cover, the number of straightforward equivalent "Multi-Fishes" is 40 as the cells of the loop in any combination of rows or columns
(2 to the power 3 or 2 to the power 5) can be replaced by digits in rows or columns.
The simplest equivalent "Multi-Fish" : the loop 135R148
- Code: Select all
+------------------------+------------------------+-----------------------+
| 48(35) 2 4(15) | 9 48 48(1) | (135) 7 6 |
| 678-35 13578 67-15 | 12568 2678 2678-1 | 135 4 9 |
| 4679-5 1579 4679-15 | 156 467 3 | 15 2 8 |
+------------------------+------------------------+-----------------------+
| 29(35) 4 29(5) | 7 289(3) 289(1) | 289 6 -2(135) |
| 269-35 359 8 | 1236 2469-3 2469-1 | 7 1359 12345 |
| 1 379 2679 | 2368 5 24689 | 249 389 234 |
+------------------------+------------------------+-----------------------+
| 2489-5 1589 249-15 | 2368 26789-3 26789 | 2489 135 135 |
| 289(5) 6 29(15) | 4 289(3) 289 | 289 (135) 7 |
| 24789 789 3 | 28 1 5 | 6 89 24 |
+------------------------+------------------------+-----------------------+
An Easy Monster [23,221] 23 Candidates, Loop All Rows
9 Truths = {1R148 3R148 5R148}
9 Links = {1c36 3c15 5c13 1n7 8n8 4n9}
17 Eliminations --> r2357c1<>5, r237c3<>1, r237c3<>5, r5c15<>3, r25c6<>1, r2c1<>3, r4c9<>2, r7c5<>3
while the most complex one is the loop 249C13567+67C1356
- Code: Select all
+-----------------------------+-----------------------------+----------------------+
| 358(4) 2 15(4) | 9 8(4) 18(4) | 135 7 6 |
| 358(67) 1358-7 15(67) | 158-26 8(267) 18(267) | 135 4 9 |
| -5(4679) 1579 -15(4679) | 156 (467) 3 | 15 2 8 |
+-----------------------------+-----------------------------+----------------------+
| 35(29) 4 5(29) | 7 38(29) 18(29) | 8(29) 6 135-2 |
| -35(269) 359 8 | 1236 -3(2469) -1(2469) | 7 1359 12345 |
| 1 379 (2679) | 2368 5 -8(2469) | (249) 389 234 |
+-----------------------------+-----------------------------+----------------------+
| -58(249) 1589 -15(249) | 2368 -38(2679) -8(2679) | -8(249) 135 135 |
| 58(29) 6 15(29) | 4 38(29) 8(29) | 8(29) 135 7 |
| -8(2479) 789 3 | 28 1 5 | 6 89 24 |
+-----------------------------+-----------------------------+----------------------+
An Easy Monster [23,221] 88 Candidates, Loop All Columns
23 Truths = {2C13567 4C13567 6C1356 7C1356 9C13567}
23 Links = {2r48 4r1 6r2 7r2 9r48 3n135 5n156 6n367 7n13567 9n1 2b2}
21 Eliminations --> r7c1567<>8, r357c1<>5, r5c15<>3, r37c3<>1, r37c3<>5, r2c4<>26, r2c2<>7
r4c9<>2, r5c6<>1, r6c6<>8, r7c5<>3, r9c1<>8
In any case, after the eliminations and "basics" (elimination of all the candidates not in any solution of a unit or of a digit), the PM is reduced to
- Code: Select all
+------------------+------------------+------------------+
| 3458 2 145 | 9 48 148 | 135 7 6 |
| 678 135 67 | 15 2678 2678 | 135 4 9 |
| 4679 1579 4679 | 156 467 3 | 15 2 8 |
+------------------+------------------+------------------+
| 2359 4 259 | 7 2389 1289 | 289 6 135 |
| 269 359 8 | 1236 2469 2469 | 7 1359 12345 |
| 1 379 2679 | 2368 5 2469 | 249 389 234 |
+------------------+------------------+------------------+
| 249 158 249 | 38 67 67 | 249 135 135 |
| 25 6 125 | 4 2389 289 | 28 135 7 |
| 2479 789 3 | 28 1 5 | 6 89 24 |
+------------------+------------------+------------------+
The rating of the puzzle is now SER=8.4 from an initial SER=9.5.
2b. Puzzle 539The puzzle contains 3 NxM rectangular matrices of cells at the intersection of N Rows and M Colums, where N and/or M > 3 : 12357N5689=R12357xC5689, 4689N2347=R4689xC2347 and 1247N3689=R1247xC3689.
The first contains the Jellyfish of cells Type II 1257N5689
- Code: Select all
+-----------------------+--------------------------+--------------------------+
| 9 8 234-1 | 7 (34 16) (25 16) | 2345-6 (23 16) (45 16) |
| 7 6 234-1 | 2345-1 (34 19) (25 19) | 8 (23 19) (45 19) |
| 1234 1234 5 | 12348 1689-34 1689-2 | 23469 1679-23 1679-4 |
+-----------------------+--------------------------+--------------------------+
| 6 12379 1237 | 128 5 178-2 | 39 4 189 |
| 2345-1 2345-1 8 | 9 ( 4 16) (2 16) | 7 ( 3 16) ( 5 16) |
| 145 14579 147 | 148 1678-4 3 | 569 1689 2 |
+-----------------------+--------------------------+--------------------------+
| 2345-8 2345-7 9 | 6 ( 3 78) ( 5 78) | 1 (2 78) (4 78) |
| 1458 1457 1467 | 158 2 1789-5 | 469 6789 3 |
| 1238 1237 12367 | 138 1789-3 4 | 269 5 6789 |
+-----------------------+--------------------------+--------------------------+
539 [22,236] 56 Candidates, Jellyfish of Cells Type II
16 Truths = {1257N5 1257N6 1257N8 1257N9}
16 Links = {1r125 6r15 7r7 8r7 9r2 2c68 3c58 4c59 5c69}
18 Eliminations --> r2c34<>1, r3c68<>2, r3c58<>3, r3c59<>4, r5c12<>1, r1c3<>1, r1c7<>6,
r4c6<>2, r6c5<>4, r7c2<>7, r7c1<>8, r8c6<>5, r9c5<>3
The second needs 3 more cells to be a loop all cells as 4689N2347 is a Rank 2 pattern.
Replacing the cover sets 17C23 by 17B47 don't change the Rank; adding the base cells 789N1 and the cover set 8B7 give a Rank 0 pattern.
- Code: Select all
+--------------------------------+-------------------------+------------------------+
| 9 8 1234 | 7 1346 1256 | 2345-6 1236 1456 |
| 7 6 1234 | 2345-1 1349 1259 | 8 1239 1459 |
| 1234 1234 5 | 234-18 134689 12689 | 234-69 123679 14679 |
+--------------------------------+-------------------------+------------------------+
| 6 (17 9 23) (17 23) | (18 2 ) 5 178-2 | ( 9 3) 4 189 |
| 2345-1 2345-1 8 | 9 146 126 | 7 136 156 |
| (1 45) (17 9 45) (17 4 ) | (18 4 ) 1678-4 3 | (69 5) 1689 2 |
+--------------------------------+-------------------------+------------------------+
| 2345-8 2345-7 9 | 6 378 578 | 1 278 478 |
| (1 8 45) (17 45) (17 6 4 ) | (18 5) 2 1789-5 | (69 4 ) 6789 3 |
| (1 8 23) (17 23) (17 23) | (18 3) 1789-3 4 | (69 2 ) 5 6789 |
+--------------------------------+-------------------------+------------------------+
539 [22,236] 68 Candidates, Loop All Cells
19 Truths = {4N2347 6N12347 8N12347 9N12347}
19 Links = {2r49 3r49 4r68 5r68 18c4 69c7 179b4 1678b7}
14 Eliminations --> r5c12<>1, r23c4<>1, r13c7<>6, r3c4<>8, r3c7<>9, r4c6<>2, r6c5<>4,
r7c2<>7, r7c1<>8, r8c6<>5, r9c5<>3
The third doesn't give a loop all cells by adding cells to its rows and/or columns.
Finally, looking for an ALS XY-Ring in all the squares of 4 boxes, the following sk-loop all cells is straightforwardly found with the help of the B/B-plot :
- Code: Select all
+-----------------------+------------------------+-----------------------+
| 9 8 1234 | 7 1346 1256 | 2345-6 1236 1456 |
| 7 6 1234 | 2345-1 1349 1259 | 8 1239 1459 |
| 1234 1234 5 | 234-18 134689 12689 | 234-69 123679 14679 |
+-----------------------+------------------------+-----------------------+
| 6 12379 1237 | (128) 5 178-2 | (39) 4 189 |
| 2345-1 2345-1 8 | 9 (146) (126) | 7 (136) (156) |
| 145 14579 147 | (148) 1678-4 3 | (569) 1689 2 |
+-----------------------+------------------------+-----------------------+
| 2345-8 2345-7 9 | 6 (378) (578) | 1 (278) (478) |
| 1458 1457 1467 | (158) 2 1789-5 | (469) 6789 3 |
| 1238 1237 12367 | (138) 1789-3 4 | (269) 5 6789 |
+-----------------------+------------------------+-----------------------+
539 [22,236] 47 Candidates, SK-Loop All Cells
16 Truths = {4689N4 57N5 57N6 4689N7 57N8 57N9}
16 Links = {16r5 78r7 18c4 69c7 2b59 3b68 4b59 5b68}
14 Eliminations --> r5c12<>1, r23c4<>1, r13c7<>6, r3c4<>8, r3c7<>9, r4c6<>2, r6c5<>4,
r7c2<>7, r7c1<>8, r8c6<>5, r9c5<>3
In any case, after the eliminations and "basics" (elimination of all the candidates not in any solution of a unit or of a digit), the PM is reduced to
- Code: Select all
+--------------------+------------------+------------------+
| 9 8 234 | 7 1346 1256 | 2345 1236 1456 |
| 7 6 234 | 2345 1349 1259 | 8 1239 1459 |
| 1234 1234 5 | 234 689 689 | 234 679 679 |
+--------------------+------------------+------------------+
| 6 12379 1237 | 128 5 178 | 39 4 189 |
| 2345 2345 8 | 9 146 126 | 7 136 156 |
| 145 14579 147 | 148 1678 3 | 569 1689 2 |
+--------------------+------------------+------------------+
| 2345 2345 9 | 6 378 578 | 1 278 478 |
| 1458 1457 1467 | 158 2 1789 | 469 6789 3 |
| 1238 1237 12367 | 138 1789 4 | 269 5 6789 |
+--------------------+------------------+------------------+
3. Questions3a. How does all this compare to David's method ?
3b. Does a puzzle exist where 2 loops all cells give different PM after eliminations and "basics"?
3c. Does there exist any other rank 0 pattern not equivalent to a loop of cells ?
To the 2 last questions, as I may be wrong, my conjecture is NO for both.