***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = TyW+W+SFin
*** Using CLIPS 6.32-r779
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
25 singles
- Code: Select all
Starting non trivial part of solution with the following RESOLUTION STATE:
1234 8 6 123 7 9 1234 1234 5
1234 1234 9 8 5 123 7 6 1234
7 5 123 123 4 6 9 8 123
124 9 124 5 3 124 8 7 6
5 1234 7 6 8 124 1234 1234 9
8 6 1234 124 9 7 5 1234 1234
9 234 8 7 1 34 6 5 234
6 134 5 9 2 8 134 134 7
1234 7 1234 34 6 5 1234 9 8
134 candidates, 549 csp-links and 549 links. Density = 6.16%
z-chain[3]: r4n4{c3 c6} - c4n4{r6 r9} - c3n4{r9 .} ==> r5c2 ≠ 4
whip[3]: b8n3{r7c6 r9c4} - r3n3{c4 c3} - c1n3{r1 .} ==> r7c9 ≠ 3
t-whip-cn[4]: c4n4{r9 r6} - c6n4{r5 r7} - c9n4{r7 r2} - c2n4{r2 .} ==> r9c1 ≠ 4, r9c3 ≠ 4
whip[1]: c3n4{r6 .} ==> r4c1 ≠ 4
whip[1]: c1n4{r2 .} ==> r2c2 ≠ 4
whip[5]: r7n2{c9 c2} - r5n2{c2 c6} - r2n2{c6 c1} - r2n4{c1 c9} - r7c9{n4 .} ==> r6c9 ≠ 2
t-whip-cn[6]: c4n3{r3 r9} - c4n4{r9 r6} - c6n4{r5 r7} - c9n4{r7 r2} - c1n4{r2 r1} - c1n3{r1 .} ==> r2c6 ≠ 3
singles ==> r7c6 = 3, r9c4 = 4
t-whip[5]: r2c6{n2 n1} - c4n1{r3 r6} - c9n1{r6 r3} - r1n1{c8 c1} - r4c1{n1 .} ==> r4c6 ≠ 2, r2c1 ≠ 2
whip[1]: r4n2{c3 .} ==> r5c2 ≠ 2, r6c3 ≠ 2
biv-chain[3]: b9n2{r9c7 r7c9} - c2n2{r7 r2} - c6n2{r2 r5} ==> r5c7 ≠ 2
whip[1]: b6n2{r6c8 .} ==> r1c8 ≠ 2
biv-chain[4]: r2n4{c1 c9} - r7n4{c9 c2} - c2n2{r7 r2} - r2c6{n2 n1} ==> r2c1 ≠ 1
biv-chain[4]: r5n2{c8 c6} - c6n4{r5 r4} - b4n4{r4c3 r6c3} - b4n3{r6c3 r5c2} ==> r5c8 ≠ 3
finned-x-wing-in-rows: n3{r5 r8}{c2 c7} ==> r9c7 ≠ 3
whip[1]: r9n3{c3 .} ==> r8c2 ≠ 3
z-chain[4]: r7c9{n4 n2} - c2n2{r7 r2} - c6n2{r2 r5} - r5n4{c6 .} ==> r6c9 ≠ 4
biv-chain[4]: b7n3{r9c3 r9c1} - r2c1{n3 n4} - c9n4{r2 r7} - b9n2{r7c9 r9c7} ==> r9c3 ≠ 2
z-chain[4]: r4n1{c3 c6} - r2n1{c6 c9} - r6c9{n1 n3} - b4n3{r6c3 .} ==> r5c2 ≠ 1
naked-single ==> r5c2 = 3
naked-pairs-in-a-row: r2{c2 c6}{n1 n2} ==> r2c9 ≠ 2, r2c9 ≠ 1
finned-x-wing-in-columns: n2{c9 c2}{r7 r3} ==> r3c3 ≠ 2
singles ==> r4c3 = 2, r4c1 = 1, r4c6 = 4, r6c3 = 4
x-wing-in-columns: n2{c1 c7}{r1 r9} ==> r1c4 ≠ 2
t-whip[2]: c9n1{r6 r3} - r1n1{c8 .} ==> r6c4 ≠ 1
stte