double diagonal x sudoku

For fans of Killer Sudoku, Samurai Sudoku and other variants

double diagonal x sudoku

Postby urhegyi » Tue Jul 27, 2021 6:49 am

I found this on the internet marked as MODERATE:
Image
Code: Select all
......3.6...712....9.......8........3........4.........1.........6............... 111222333111222333111222333444555666444555666444555666777888999777888999777888999 JSX
...............2.........5.........2........8........4.......3....347...6.3...... 111222333111222333111222333444555666444555666444555666777888999777888999777888999 JSX

when adding one more digit (now this example isn't symmetric anymore) it's for me a moderate I can solve:
Code: Select all
......3.6...712....9.......8........3........4.........1.........6............... 111222333111222333111222333444555666444555666444555666777888999777888999777888999 JSX
...............2.........5.........2........8........4.......3....3476..6.3...... 111222333111222333111222333444555666444555666444555666777888999777888999777888999 JSX

Can 1to9only make a rating, eventually with a complete solvepath, so that I can see what I'm missing from techniques, but I really think the original isn't moderate at all.
My older downloaded version of JigsawExplainer hasn't support for x-sudoku on sensei4 base, so I can't try it.
SiseSuSo needs a lot of turbot fish but can solve it.
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: double diagonal x sudoku

Postby 1to9only » Tue Jul 27, 2021 7:47 am

The first sensei4-X is rated:
Code: Select all
ED=8.4/1.5/1.5
ED=2.9/1.5/1.5

solution path: Show
Code: Select all
Pass:1 Grid:1 Diff:0
......3.6...712....9.6.....8........3........4.........1.........6............... 1.5, Hidden Single: R3C4: 6 in column, r3c4=6
......3.66..712....9.6.....8........3........4.........1.........6............... 1.5, Hidden Single: R2C1: 6 in column, r2c1=6
......3.66..712....9.6.3...8........3........4.........1.........6............... 1.5, Hidden Single: R3C6: 3 in column, r3c6=3
......3.66..712....9.6.3..78........3........4.........1.........6............... 1.5, Hidden Single: R3C9: 7 in column, r3c9=7
......3.66..712....9.6.3..78........3........4.........1........86............... 1.5, Hidden Single: R8C2: 8 in row, r8c2=8
......3.66..712....9.6.3..78........3........4.........1........86............... ED=1.5/1.5/1.5

Pass:1 Grid:2 Diff:0
...............2.........5.........2........8........47......3....347...6.3...... 1.5, Hidden Single: R7C1: 7 in column, r7c1=7
...............2.........5.........2........8........47....6.3....347...6.3...... 1.5, Hidden Single: R7C6: 6 in column, r7c6=6
...............2.3.......5.........2........8........47....6.3....347...6.3...... 1.5, Hidden Single: R2C9: 3 in row, r2c9=3
...............2.3......45.........2........8........47....6.3....347...6.3...... 1.5, Hidden Single: R3C7: 4 in row, r3c7=4
...............2.3......45.........2........8........47....6.3....347...6.3....4. 1.2, Hidden Single: R9C8: 4 in cage, r9c8=4
...............2.3......45.........2........8........474...6.3....347...6.3....4. 1.2, Hidden Single: R7C2: 4 in cage, r7c2=4
...............2.3......45.........2........8........474...6.3....347.2.6.3....4. 1.2, Hidden Single: R8C8: 2 in cage, r8c8=2
...............2.3......45.........2........8........4742..6.3....347.2.6.3....4. 1.5, Hidden Single: R7C3: 2 in column, r7c3=2
...............2.3......45.........2........8........4742..6.3....347.2.6.3....4. ED=1.5/1.5/1.5

Pass:1, 13 placements, 134 eliminations.

Pass:2 Grid:1 Diff:0
......3.66..712....9.6.3..78........3........4.........1........86............... ED=1.5/1.5/1.5

Pass:2 Grid:2 Diff:0
...............2.3......45.........2........8........4742..6.3....347.2.6.3....4. ED=1.5/1.5/1.5

Pass:2, 0 placements, 0 eliminations.

Pass:3 Grid:1 Diff:1
......3.66..712....9.6.3..78........3........4.........1........86............... 2.6, Pointing: Cells R4C3,R5C3,R6C3: 1 in cage and column: r3c3<>1, r1c3<>1
......3.66..712....9.6.3..78........3........4.........1........86............... 2.6, Pointing: Cells R4C3,R5C3,R6C3: 9 in cage and column: r7c3<>9, r9c3<>9
......3.66..712....9.6.3..78........3........4.........1........86............... 2.6, Pointing: Cells R1C4,R1C5,R1C6: 9 in cage and row: r1c8<>9
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R1C5,R3C5: 4 in column and cage: r1c6<>4, r1c4<>4
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R1C8,R2C8,R3C8: 4 in column and cage: r3c7<>4, r2c7<>4, r2c9<>4
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R5C2,R5C3: 2 in row and cage: r4c3<>2, r6c3<>2, r4c2<>2, r6c2<>2
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R6C2,R6C3: 5 in row and cage: r5c3<>5, r4c3<>5, r4c2<>5, r5c2<>5
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R7C1,R7C3: 2 in row and cage: r8c1<>2, r9c2<>2, r9c3<>2, r9c1<>2
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R9C2,R9C3: 4 in row and cage: r7c3<>4
......3.66..712....9.6.3..78........3........4.........1........86............... 2.8, Claiming: Cells R1C1,R3C3: 2 in antidiagonal(\) and cage: r3c1<>2, r1c3<>2, r1c2<>2
......3.66..712....9.6.3..78........32.......4.........1........86............... 1.5, Hidden Single: R5C2: 2 in column, r5c2=2
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R2C2,R9C2: 3 in column: r9c9<>3
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R3C3,R7C3: 2 in column: r3c7<>2
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.6, Pointing: Cells R1C8,R3C8: 2 in cage and column: r4c8<>2, r6c8<>2, r9c8<>2
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.6, Pointing: Cells R8C7,R8C9: 2 in cage and row: r8c5<>2, r8c4<>2
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R1C1,R1C8: 1 in row: r8c8<>1
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R6C4,R7C3: 3 in diagonal(/): r7c4<>3
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R6C6,R7C7: 6 in antidiagonal(\): r6c7<>6, r7c6<>6
......3.66..712....9.6.3..78........32.......4.........1........86............... 3.0, Naked Pair: Cells R3C1,R3C7: 1,5 in row: r3c3<>5, r3c5<>5, r3c8<>1,5
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.6, Pointing: Cells R1C4,R1C5,R1C6: 5 in cage and row: r1c1<>5, r1c8<>5, r1c3<>5, r1c2<>5
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R3C1,R3C7: 5 in row: r9c1<>5
......3.66..712....9.6.3..78........32.......4.........1........86............... 3.4, Hidden Pair: Cells R1C1,R1C8: 1,2 in row: r1c1<>7, r1c8<>4,8
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.8, Claiming: Cells R7C1,R8C1,R9C1: 7 in column and cage: r9c2<>7, r7c3<>7, r9c3<>7
......3.66..712....9.6.3..78........32.......4.........1........86............... 3.4, Hidden Pair: Cells R6C4,R7C3: 2,3 in diagonal(/): r7c3<>5, r6c4<>1,9
......3.66..712....9.6.3..78........32.......4.........1........86............... 2.9, Generalized Intersection: Cells R3C7,R4C6: 1 in diagonal(/): r4c7<>1
......3.66..712....9.6.3..78........32.......4.........1........86............... ED=3.4/1.5/1.5

Pass:3 Grid:2 Diff:1
...............2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 1.5, Hidden Single: R9C5: 2 in column, r9c5=2
...............2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 2.6, Pointing: Cells R4C7,R5C7,R6C7: 5 in cage and column: r7c7<>5, r9c7<>5, r8c7<>5
...............2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 2.6, Pointing: Cells R7C7,R8C7,R9C7: 8 in cage and column: r1c7<>8
.......8.......2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 1.5, Hidden Single: R1C8: 8 in row, r1c8=8
.......8.......2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 2.8, Claiming: Cells R8C2,R9C2: 1 in column and cage: r8c1<>1, r8c3<>1
.......8.......2.3......45.........2........8........4742..6.3....347.2.6.3.2..4. 2.8, Claiming: Cells R4C8,R5C8,R6C8: 6 in column and cage: r6c7<>6, r5c7<>6, r4c7<>6
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. 1.5, Hidden Single: R5C8: 6 in row, r5c8=6
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. 2.8, Claiming: Cells R4C7,R4C8: 1 in row and cage: r6c8<>1, r6c7<>1, r5c7<>1
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. 2.8, Claiming: Cells R4C6,R5C5: 3 in diagonal(/) and cage: r5c6<>3, r6c5<>3, r4c5<>3
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. 2.9, Generalized Intersection: Cells R1C1,R5C5: 3 in antidiagonal(\): r1c5<>3, r5c1<>3
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. 2.9, Generalized Intersection: Cells R1C1,R4C4: 4 in antidiagonal(\): r4c1<>4, r1c4<>4
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. ED=2.9/1.5/1.5

Pass:3, 4 placements, 118 eliminations.

Pass:4 Grid:1 Diff:1
......3.66..712....9.6.3..78........32.......4.........1........86............... ED=3.4/1.5/1.5

Pass:4 Grid:2 Diff:1
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. ED=2.9/1.5/1.5

Pass:4, 0 placements, 0 eliminations.

Pass:5 Grid:1 Diff:2
......3.66..712....9.6.3..78........32.......4.........1........86............... ED=3.4/1.5/1.5

Pass:5 Grid:2 Diff:2
.......8.......2.3......45.........2.......68........4742..6.3....347.2.6.3.2..4. ED=2.9/1.5/1.5

Pass:5, 0 placements, 0 eliminations.

Pass:6 Grid:1 Diff:5
......3.66..712....9.6.3..78........32.......4.........1........86............... 6.5, Bidirectional X-Cycle (w/4 nodes): R8C8,R6C8,R6C4,R7C3,R2C3,R2C2: r7c9<>3, r4c4<>3, r9c3<>3, r6c9<>3, r6c5<>3
......3.66..712....9.6.3..78........32.......4.........1........86....3.......... 1.2, Hidden Single: R8C8: 3 in cage, r8c8=3
......3.66.3712....9.6.3..78........32.......4.........1........86....3.......... 1.2, Hidden Single: R2C3: 3 in cage, r2c3=3
......3.66.3712....9.6.3..78.......332.......4.........1........86....3.......... 1.2, Hidden Single: R4C9: 3 in cage, r4c9=3
......3.66.3712....9.6.3..78.......332.......4..3......1........86....3.......... 1.2, Hidden Single: R6C4: 3 in cage, r6c4=3
......3.66.3712....9.6.3..78.......332.......4..3......1........86....3..3....... 1.2, Hidden Single: R9C2: 3 in cage, r9c2=3
......3.66.3712....9.6.3..78.......332.......4..3......1........86....3..34...... 1.2, Hidden Single: R9C3: 4 in cage, r9c3=4
......3.66.3712....9.6.3..78.......332.......4..3......1..3.....86....3..34...... 1.2, Hidden Single: R7C5: 3 in cage, r7c5=3
......3.66.3712....9.6.3..78.......332.......4.53......1..3.....86....3..34...... 1.5, Hidden Single: R6C3: 5 in column, r6c3=5
......3.6653712....9.6.3..78.......332.......4.53......1..3.....86....3..34...... 1.5, Hidden Single: R2C2: 5 in column, r2c2=5
.4....3.6653712....9.6.3..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R1C2: 4 in cage, r1c2=4
.47...3.6653712....9.6.3..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R1C3: 7 in cage, r1c3=7
.47...3.6653712....986.3..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R3C3: 8 in cage, r3c3=8
247...3.6653712....986.3..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R1C1: 2 in cage, r1c1=2
247...3.6653712...1986.3..78.......332.......4.53......1..3.....86....3..34...... 1.0, Hidden Single: R3C1: 1 in cage, r3c1=1
247...3.6653712...198643..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R3C5: 4 in cage, r3c5=4
247...316653712...198643..78.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R1C8: 1 in cage, r1c8=1
247...316653712...198643.278.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R3C8: 2 in cage, r3c8=2
247...316653712...1986435278.......332.......4.53......1..3.....86....3..34...... 1.0, Hidden Single: R3C7: 5 in row, r3c7=5
247...316653712.4.1986435278.......332.......4.53......1..3.....86....3..34...... 1.2, Hidden Single: R2C8: 4 in cage, r2c8=4
247...316653712.4.1986435278.......332.......4.53......12.3.....86....3..34...... 1.2, Hidden Single: R7C3: 2 in cage, r7c3=2
247...316653712.4.1986435278.......332.......4.53......12.3.....86....3..342..... 1.5, Hidden Single: R9C4: 2 in column, r9c4=2
247...316653712.4.1986435278..4....332.......4.53......12.3.....86....3..342..... 1.5, Hidden Single: R4C4: 4 in row, r4c4=4
247...316653712.4.1986435278..4....332.......4.53......12.34....86....3..342..... 1.5, Hidden Single: R7C6: 4 in row, r7c6=4
247...316653712.4.1986435278..4.1..332.......4.53......12.34....86....3..342..... 1.5, Hidden Single: R4C6: 1 in diagonal(/), r4c6=1
247...316653712.4.1986435278..4.1..3321......4.53......12.34....86....3..342..... 1.2, Hidden Single: R5C3: 1 in cage, r5c3=1
247...316653712.4.1986435278.94.1..3321......4.53......12.34....86....3..342..... 1.0, Hidden Single: R4C3: 9 in column, r4c3=9
247...316653712.4.1986435278.94.1..3321......4.53......12.34....861...3..342..... 1.2, Hidden Single: R8C4: 1 in cage, r8c4=1
247...316653712.4.1986435278.94.1..3321......4.53......12.34....861...3..342....1 1.5, Hidden Single: R9C9: 1 in antidiagonal(\), r9c9=1
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 1.2, Hidden Single: R6C7: 1 in cage, r6c7=1
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 2.6, Pointing: Cells R9C5,R9C6: 6 in cage and row: r9c8<>6
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 2.9, Generalized Intersection: Cells R5C5,R9C1: 7 in diagonal(/): r9c5<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 2.9, Generalized Intersection: Cells R5C5,R9C1: 9 in diagonal(/): r9c5<>9
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 3.4, Hidden Pair: Cells R8C7,R8C9: 2,4 in cage: r8c7<>7,9, r8c9<>5,9
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 4.4, XYZ-Wing: Cells R6C6,R6C2,R5C5 on value 7: r6c5<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 6.6, Turbot Fish (w/4 nodes): R4C7.6 off: r4c7<>6
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 6.7, Forcing X-Chain (w/6 nodes): R8C5.5 off: r8c5<>5
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 3.0, Naked Pair: Cells R5C5,R8C5: 7,9 in column: r1c5<>9, r6c5<>9, r4c5<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34....861...3..342....1 7.2, Forcing Chain (w/8 nodes): R5C9.5 off: r5c9<>5
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34..5.861...3..342....1 1.5, Hidden Single: R7C9: 5 in column, r7c9=5
247...316653712.4.1986435278.94.1..3321......4.53..1...12.34..55861...3..342....1 1.2, Hidden Single: R8C1: 5 in cage, r8c1=5
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 2.0, Direct Hidden Pair: Cells R9C5,R9C6: 5,6 in cage, r7c4=8
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 2.8, Claiming: Cells R8C5,R8C6: 7 in row and cage: r9c6<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 2.8, Claiming: Cells R8C5,R8C6: 9 in row and cage: r9c6<>9
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 7.1, Forcing Chain (w/6 nodes): R5C6.5 off: r5c6<>5
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 7.2, Forcing Chain (w/8 nodes): R5C7.8 off: r5c7<>8
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 7.8, Nishio Forcing Chain (w/10 nodes): R5C8.7 on ==> R7C7.7 both on & off: r5c8<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 7.8, Nishio Forcing Chain (w/11 nodes): R5C8.9 on ==> R7C7.9 both on & off: r5c8<>9
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 8.3, Region Forcing Chains (w/10 nodes): 6 in row ==> R4C8.6 off: r4c8<>6
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 8.3, Cell Forcing Chains (w/12 nodes): R4C5 ==> R7C7.7 off: r7c7<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 2.8, Claiming: Cells R5C5,R6C6: 7 in antidiagonal(\) and cage: r5c6<>7
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 8.4, Cell Forcing Chains (w/16 nodes): R6C6 ==> R5C6.9 off: r5c6<>9
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 8.3, Cell Forcing Chains (w/12 nodes): R5C8 ==> R5C9.8 off: r5c9<>8
247...316653712.4.1986435278.94.1..3321......4.53..1...12834..55861...3..342....1 ED=8.4/1.5/1.5

Pass:6 Grid:2 Diff:5
4.1..3.8.......2133..1..45.834..5..21...3..682....1..4742..6.3....347.2.6.3.2..4. 1.2, Hidden Single: R2C8: 1 in cage, r2c8=1
4.1..3.8.......2133..1..45.834..51.21...3..682....1..4742..6.3....347.2.6.3.2..4. 1.2, Hidden Single: R4C7: 1 in cage, r4c7=1
4.1..3.8.......2133..1..45.834..51.21...3..682....13.4742..6.3....347.2.6.3.2..4. 1.2, Hidden Single: R6C7: 3 in cage, r6c7=3
4.1..3.8.......2133..1..45.834..51.21...3.5682....13.4742..6.3....347.2.6.3.2..4. 1.2, Hidden Single: R5C7: 5 in cage, r5c7=5
4.1..3.8.......2133..1..45.834..51.21...3.5682....13.4742..6.3....347.2.613.2..4. 1.2, Hidden Single: R9C2: 1 in cage, r9c2=1
4.1..3.8.......2133..1..45.834..51.21...3.5682....13.4742.16.3....347.2.613.2..4. 1.2, Hidden Single: R7C5: 1 in cage, r7c5=1
4.1..3.8.......2133..1..45.834..51.21...3.5682....13.4742.16.3....347.21613.2..4. 1.2, Hidden Single: R8C9: 1 in cage, r8c9=1
4.1..3.8.......2133..1..45.834..51.21...3.5682....13.4742.16.3....347621613.2..4. 1.2, Hidden Single: R8C7: 6 in cage, r8c7=6
4.1..3.8.......2133..1..456834..51.21...3.5682....13.4742.16.3....347621613.2..4. 1.2, Hidden Single: R3C9: 6 in cage, r3c9=6
461..3.8.......2133..1..456834..51.21...3.5682....13.4742.16.3....347621613.2..4. 1.5, Hidden Single: R1C2: 6 in row, r1c2=6
461..3.8.......21332.1..456834..51.21...3.5682....13.4742.16.3....347621613.2..4. 1.2, Hidden Single: R3C2: 2 in cage, r3c2=2
461..3.8.5.....21332.1..456834..51.21...3.5682....13.4742.16.3....347621613.2..4. 1.2, Hidden Single: R2C1: 5 in cage, r2c1=5
461..3.8.5.....21332.1..456834..51.21...3.5682....13.4742.16.3.9..347621613.2..4. 1.0, Hidden Single: R8C1: 9 in column, r8c1=9
461..3.8.5.8...21332.1..456834..51.21...3.5682....13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R2C3: 8 in cage, r2c3=8
4612.3.8.5.8...21332.1..456834..51.21...3.5682....13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R1C4: 2 in cage, r1c4=2
461253.8.5.8...21332.1..456834..51.21...3.5682....13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R1C5: 5 in cage, r1c5=5
461253.8.5.8...21332.1..456834..51.21...3.5682.6..13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R6C3: 6 in cage, r6c3=6
461253.8.5.8...21332.1..456834..51.21...3.568256..13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R6C2: 5 in cage, r6c2=5
461253.8.5.8...21332.1..456834..51.21...32568256..13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R5C6: 2 in cage, r5c6=2
461253.8.5.8...21332.1..456834..51.21..432568256..13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R5C4: 4 in cage, r5c4=4
461253.8.5.8..421332.1..456834..51.21..432568256..13.4742.16.3.9..347621613.2..4. 1.2, Hidden Single: R2C6: 4 in cage, r2c6=4
461253.8.5.8..421332.1..456834..51.21..432568256..13.4742.16.3.9.5347621613.2..4. 1.2, Hidden Single: R8C3: 5 in cage, r8c3=5
461253.8.5.8..421332.1..456834..51.21..432568256..13.4742.16.3.985347621613.2..4. 1.0, Hidden Single: R8C2: 8 in cage, r8c2=8
461253.8.5.8..421332.1..456834..51.21..432568256.813.4742.16.3.985347621613.2..4. 1.2, Hidden Single: R6C5: 8 in cage, r6c5=8
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742.16.3.985347621613.2..4. 1.2, Hidden Single: R3C6: 8 in cage, r3c6=8
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742.16.3.985347621613.29.4. 1.0, Hidden Single: R9C6: 9 in column, r9c6=9
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742.16.3.985347621613.29.45 1.5, Hidden Single: R9C9: 5 in antidiagonal(\), r9c9=5
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742516.3.985347621613.29.45 1.2, Hidden Single: R7C4: 5 in cage, r7c4=5
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742516.3.985347621613829.45 1.0, Hidden Single: R9C4: 8 in cage, r9c4=8
461253.8.5.8..421332.1.8456834..51.21..432568256.813.4742516.3.985347621613829745 1.0, Hidden Single: R9C7: 7 in row, r9c7=7
461253.875.8..421332.1.8456834..51.21..432568256.813.4742516.3.985347621613829745 1.2, Hidden Single: R1C9: 7 in cage, r1c9=7
4612539875.8..421332.1.8456834..51.21..432568256.813.4742516.3.985347621613829745 1.0, Hidden Single: R1C7: 9 in cage, r1c7=9
4612539875.8..421332.1.8456834..51.21..432568256.813.474251683.985347621613829745 1.0, Hidden Single: R7C7: 8 in column, r7c7=8
4612539875.8..421332.1.8456834..51.21..432568256.813.4742516839985347621613829745 1.0, Hidden Single: R7C9: 9 in cage, r7c9=9
4612539875.8..421332.1.8456834..51.21..4325682569813.4742516839985347621613829745 1.0, Hidden Single: R6C4: 9 in diagonal(/), r6c4=9
4612539875.8..421332.1.8456834..51.21..432568256981374742516839985347621613829745 1.0, Hidden Single: R6C8: 7 in row, r6c8=7
4612539875.8..421332.1.8456834..51921..432568256981374742516839985347621613829745 1.0, Hidden Single: R4C8: 9 in cage, r4c8=9
4612539875.8..421332.198456834..51921..432568256981374742516839985347621613829745 1.2, Hidden Single: R3C5: 9 in cage, r3c5=9
4612539875.8..4213327198456834..51921..432568256981374742516839985347621613829745 1.0, Hidden Single: R3C3: 7 in row, r3c3=7
461253987598..4213327198456834..51921..432568256981374742516839985347621613829745 1.0, Hidden Single: R2C2: 9 in cage, r2c2=9
461253987598..4213327198456834..519217.432568256981374742516839985347621613829745 1.0, Hidden Single: R5C2: 7 in column, r5c2=7
461253987598..4213327198456834..5192179432568256981374742516839985347621613829745 1.0, Hidden Single: R5C3: 9 in cage, r5c3=9
461253987598..42133271984568346.5192179432568256981374742516839985347621613829745 1.0, Hidden Single: R4C4: 6 in antidiagonal(\), r4c4=6
461253987598..4213327198456834675192179432568256981374742516839985347621613829745 1.0, Hidden Single: R4C5: 7 in cage, r4c5=7
4612539875987.4213327198456834675192179432568256981374742516839985347621613829745 1.0, Hidden Single: R2C4: 7 in column, r2c4=7
461253987598764213327198456834675192179432568256981374742516839985347621613829745 1.0, Hidden Single: R2C5: 6 in cage, r2c5=6
461253987598764213327198456834675192179432568256981374742516839985347621613829745 ED=2.9/1.5/1.5

Pass:6, 114 placements, 524 eliminations.

Pass:7 Grid:1 Diff:5
2479..316653712.4.1986435278.94612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R1C4: 9 in column, r1c4=9
24798.316653712.4.1986435278.94612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R1C5: 8 in column, r1c5=8
247985316653712.4.1986435278.94612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R1C6: 5 in cage, r1c6=5
24798531665371284.1986435278.94612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R2C7: 8 in column, r2c7=8
2479853166537128491986435278.94612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R2C9: 9 in cage, r2c9=9
2479853166537128491986435278794612533215987644.5327198.12834675586179432.34256981 1.0, Hidden Single: R4C2: 7 in row, r4c2=7
247985316653712849198643527879461253321598764465327198.12834675586179432.34256981 1.0, Hidden Single: R6C2: 6 in cage, r6c2=6
247985316653712849198643527879461253321598764465327198912834675586179432.34256981 1.0, Hidden Single: R7C1: 9 in row, r7c1=9
247985316653712849198643527879461253321598764465327198912834675586179432734256981 1.0, Hidden Single: R9C1: 7 in cage, r9c1=7
247985316653712849198643527879461253321598764465327198912834675586179432734256981 ED=8.4/1.5/1.5

Pass:7, 9 placements, 9 eliminations.

Done.
......3.6...712....9.......8........3........4.........1.........6............... ED=8.4/1.5/1.5 <- Solved.
...............2.........5.........2........8........4.......3....347...6.3...... ED=2.9/1.5/1.5 <- Solved.
ED=8.4/1.5/1.5
247985316653712849198643527879461253321598764465327198912834675586179432734256981
461253987598764213327198456834675192179432568256981374742516839985347621613829745
Solved.

The 2nd sensei4-X (with extra 6 at r8c7) is rated:
Code: Select all
ED=3.4/1.5/1.5
ED=3.4/1.5/1.5

Edit: I've stopped updating SudokuJigsawExplainer, and it is no longer available for download. The last version was on 7th April, this can solve the 1st sensei4-X:
Code: Select all
java.exe -cp SudokuJigsawExplainer.jar diuf.sudoku.test.sensei4 --input=[2-lines-in-sensei4-x.txt] -X -c -h

Edit: Also solves with -c [chaining, >6.6] option, higher difficulty options are -a [advanced, >10.0 ] and -e [experimental, >11.0]
Last edited by 1to9only on Tue Jul 27, 2021 9:00 am, edited 1 time in total.
User avatar
1to9only
 
Posts: 4177
Joined: 04 April 2018

Re: double diagonal x sudoku

Postby urhegyi » Tue Jul 27, 2021 8:33 am

Edit: I've stopped updating SudokuJigsawExplainer, and it is no longer available for download. The last version was on 7th April, this can solve the 1st sensei4-X:
Code: Select all
java.exe -cp SudokuJigsawExplainer.jar diuf.sudoku.test.sensei4 --input=[2-lines-in-sensei4-x.txt] -X -a -h

I had still a copy of your 7 april version and got it to work with the above command line.
Thank you for your great, but still unfinished version of JigsawExplainer.
Any plans to make your source code available?
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: double diagonal x sudoku

Postby Hajime » Tue Jul 27, 2021 9:01 am

Actually this is not a jigsaw but two normal Sudoku-X .
Solving may need various types of Turbots using also the diagonals as the most difficult rated method .
So the SE is about 4.2 and not 8.4, I think.
Code: Select all
#2//B4,X/E10,X
......3.6...712....9.......8........3........4.........1.........6...............
...............2.........5.........2........8........4.......3....347...6.3......

Possible solution path:
Hidden Text: Show
Code: Select all
The / and \ stands for the diagonal-houses

   1   1   g1r8c2=8   Hidden Single In row 2   
   1   2   g1r3c4=6   Hidden Single In col 3   
   1   3   g1r3c6=3   Hidden Single In col 3   
   1   4   g1r3c9=7   Hidden Single In col 3   
   1   5   g2r2c9=3   Hidden Single In row 9   
   1   6   g2r3c7=4   Hidden Single In row 7   
   1   7   g2r7c1=7   Hidden Single In col 7   
   1   8   g2r7c6=6   Hidden Single In col 7   
   1   9   g2r9c8=4   Hidden Single In col 9   
   1   10   g2r7c2=4   Hidden Single In box 2   
   1   11   g2r8c8=2   Hidden Single In box 5   
   2   12   g1r2c1=6   Hidden Single In col 2   
   2   13   g2r7c3=2   Hidden Single In col 7   
Pointing, Claiming  | (9)g1b2r1 => (-9)g1r1c8 | (2)g1r5b4 => (-2)g1r4c2 (-2)g1r4c3 (-2)g1r6c2 (-2)g1r6c3 | (5)g1r6b4 => (-5)g1r4c2 (-5)g1r4c3 (-5)g1r5c2 (-5)g1r5c3 | (2)g1r7b7 => (-2)g1r8c1 (-2)g1r9c1 (-2)g1r9c2 (-2)g1r9c3 | (4)g1r9b7 => (-4)g1r7c3 | (1)g1c1b1 => (-1)g1r1c3 (-1)g1r3c3 | (9)g1c1b7 => (-9)g1r7c3 (-9)g1r9c3 | (4)g1c5b2 => (-4)g1r1c4 (-4)g1r1c6 | (4)g1c8b3 => (-4)g1r2c7 (-4)g1r2c9 (-4)g1r3c7 | (2)g1/b1 => (-2)g1r1c2 (-2)g1r1c3 (-2)g1r3c1 | (8)g2r1b3 => (-8)g2r2c8 | (1)g2r4b6 => (-1)g2r5c7 (-1)g2r5c8 (-1)g2r6c7 (-1)g2r6c8 | (6)g2r5b6 => (-6)g2r4c7 (-6)g2r4c8 (-6)g2r6c7 (-6)g2r6c8 | (1)g2c2b7 => (-1)g2r8c1 (-1)g2r8c3 | (5)g2b6c7 => (-5)g2r7c7 (-5)g2r8c7 (-5)g2r9c7 | (8)g2b9c7 => (-8)g2r1c7 | (3)g2\b5 => (-3)g2r4c5 (-3)g2r5c6 (-3)g2r6c5 (-3)g2r6c6
   4   14   g1r5c2=2   Hidden Single In col 5   
   4   15   g2r1c8=8   Hidden Single In row 8   
   4   16   g2r5c8=6   Hidden Single In col 5   
Naked/Hidden Pairs,Triplets,Quads  | NSS (45789)g1r1c23456 => (-57)g1r1c1 (-458)g1r1c8
Pointing, Claiming  | (7)g1c1b7 => (-7)g1r7c3 (-7)g1r9c2 (-7)g1r9c3
Generalized Intersection  | (1)g1r1c8/ => (-1)g1r8c8 | (2)g1c3r3\ => (-2)g1r3c7 | (6)g1/r6c7 => (-6)g1r6c7 | (3)g1\r7c4 => (-3)g1r7c4 | (6)g1/r7c6 => (-6)g1r7c6 | (2)g1b3c8 => (-2)g1r4c8 (-2)g1r6c8 (-2)g1r9c8 | (4)g2/r1c4 => (-4)g2r1c4 | (3)g2/r1c5 => (-3)g2r1c5 | (4)g2/r4c1 => (-4)g2r4c1 | (3)g2/r5c1 => (-3)g2r5c1 | (2)g2b5r5 => (-2)g2r5c1 (-2)g2r5c2 | (2)g2c5b8 => (-2)g2r9c4 (-2)g2r9c6
   8   17   g2r9c5=2   Hidden Single In row 5   
Naked/Hidden Pairs,Triplets,Quads  | NSS (15)g1r3c17 => (-5)g1r3c3 (-5)g1r3c5 (-15)g1r3c8 | NSS (14579)g1/23459 => (-19)g1r6c4 (-5)g1r7c3
Pointing, Claiming  | (5)g1b2r1 => (-5)g1r1c2 (-5)g1r1c3
Generalized Intersection  | (5)g1r3c1\ => (-5)g1r9c1 | (1)g1\r4c7 => (-1)g1r4c7
2-string-Kite,SkyScraper,TurbotCrane  |
X-Chain [4]  (1)g1r1c1=r1c8-r3c7=r4c6 => (-1)g1r4c4 (-1)g1r6c6 |
Turbot Crane (1)g1r3c7=r3c1-r1c1=r9c9 => (-1)g1r8c7 (-1)g1r9c7 |
Turbot Crane (3)g1r2c2=r2c3-r7c3=r6c4 => (-3)g1r4c4 |
X-Chain [4]  (3)g1r2c3=r2c2-r8c8=r7c9 => (-3)g1r7c3 |
Skyscraper (3)g1r4c5=r4c9-r7c9=r7c5 => (-3)g1r6c5 (-3)g1r8c5 (-3)g1r9c5 |
Skyscraper (3)g1r4c9=r4c5-r7c5=r7c9 => (-3)g1r6c9 |
Turbot Crane (3)g1r6c4=r9c4-r9c2=r9c3 => (-3)g1r9c4 |
Turbot Crane (4)g1r2c8=r4c6-r7c6=r7c7 => (-4)g1r2c2 |
Turbot Crane (6)g1r4c2=r6c2-r6c6=r7c7 => (-6)g1r4c7 |
Skyscraper (3)g2r4c2=r1c2-r1c6=r4c6 => (-3)g2r4c7
   13   18   g1r7c3=2   Naked Single   
   13   19   g2r3c1=3   Naked Single   
   14   20   g1r3c8=2   Hidden Single In row 8   
   14   21   g1r4c9=3   Hidden Single In row 9   
   14   22   g1r7c5=3   Hidden Single In row 5   
   14   23   g1r8c8=3   Hidden Single In row 8   
   14   24   g1r1c1=2   Hidden Single In col 1   
   14   25   g1r9c2=3   Hidden Single In col 9   
   14   26   g1r1c2=4   Hidden Single In col 1   
   14   27   g1r2c3=3   Hidden Single In col 2   
   14   28   g1r9c3=4   Hidden Single In col 9   
   14   29   g1r6c3=5   Hidden Single In col 6   
   14   30   g1r9c4=2   Hidden Single In col 9   
   14   31   g1r3c5=4   Hidden Single In col 3   
   14   32   g1r2c8=4   Hidden Single In col 2   
   14   33   g1r3c1=1   Hidden Single In box 7   
   14   34   g1r2c2=5   Hidden Single In box 5   
   14   35   g1r1c3=7   Hidden Single In box 3   
   14   36   g1r3c3=8   Hidden Single In box 9   
   14   37   g1r1c8=1   Hidden Single In box 2   
   14   38   g1r3c7=5   Hidden Single In box 7   
   14   39   g1r9c9=1   Hidden Single In sudokuX/   
   14   40   g1r4c6=1   Hidden Single In sudokuX\   
   14   41   g2r1c1=4   Hidden Single In row 1   
   14   42   g2r4c3=4   Hidden Single In row 3   
   14   43   g2r5c1=1   Hidden Single In row 1   
   14   44   g2r6c7=3   Hidden Single In row 7   
   14   45   g2r7c5=1   Hidden Single In col 7   
   14   46   g2r9c9=5   Hidden Single In sudokuX/   
   14   47   g2r7c7=8   Hidden Single In sudokuX/   
   15   48   g1r4c3=9   Naked Single   
   15   49   g1r5c3=1   Naked Single   
   15   50   g2r7c9=9   Naked Single   
   16   51   g1r6c7=1   Hidden Single In row 7   
   16   52   g2r1c9=7   Naked Single   
   16   53   g2r3c9=6   Naked Single   
   16   54   g2r7c4=5   Naked Single   
   16   55   g2r8c9=1   Naked Single   
   16   56   g2r9c7=7   Naked Single   
   17   57   g1r4c7=2   Naked Single   
   17   58   g2r1c7=9   Naked Single   
   17   59   g2r2c8=1   Naked Single   
   17   60   g2r5c7=5   Naked Single   
   17   61   g2r8c7=6   Naked Single   
   18   62   g1r4c2=7   Hidden Single In row 2   
   18   63   g1r6c5=2   Hidden Single In row 5   
   18   64   g1r6c2=6   Hidden Single In row 2   
   18   65   g1r8c9=2   Hidden Single In row 9   
   18   66   g1r8c7=4   Hidden Single In row 7   
   18   67   g1r8c1=5   Hidden Single In row 1   
   18   68   g1r5c9=4   Hidden Single In col 5   
   18   69   g1r7c9=5   Hidden Single In col 7   
   18   70   g1r7c7=6   Hidden Single In sudokuX/   
   18   71   g2r4c7=1   Naked Single   
   19   72   g1r5c7=7   Hidden Single In col 5   
   19   73   g1r6c6=7   Hidden Single In box 9   
   19   74   g1r5c5=9   Hidden Single In sudokuX/   
   19   75   g1r9c1=7   Hidden Single In sudokuX\   
   19   76   g2r5c2=7   Naked Single   
   19   77   g2r5c3=9   Naked Single   
   19   78   g2r8c2=8   Naked Single   
   19   79   g2r8c3=5   Naked Single   
   19   80   g2r9c2=1   Naked Single   
   20   81   g1r7c1=9   Naked Single   
   20   82   g1r7c4=8   Naked Single   
   20   83   g1r7c8=7   Naked Single   
   20   84   g1r9c6=6   Naked Single   
   20   85   g1r9c7=9   Naked Single   
   20   86   g1r9c8=8   Naked Single   
   20   87   g2r2c1=5   Naked Single   
   20   88   g2r2c3=8   Naked Single   
   20   89   g2r2c5=6   Naked Single   
   20   90   g2r3c5=9   Naked Single   
   20   91   g2r3c6=8   Naked Single   
   20   92   g2r4c8=9   Naked Single   
   20   93   g2r6c2=5   Naked Single   
   20   94   g2r6c8=7   Naked Single   
   20   95   g2r8c1=9   Naked Single   
   20   96   g2r9c4=8   Naked Single   
   20   97   g2r9c6=9   Naked Single   
   21   98   g1r1c4=9   Naked Single   
   21   99   g1r1c5=8   Naked Single   
   21   100   g1r1c6=5   Naked Single   
   21   101   g1r2c7=8   Naked Single   
   21   102   g1r2c9=9   Naked Single   
   21   103   g1r4c5=6   Naked Single   
   21   104   g1r4c8=5   Naked Single
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân

Re: double diagonal x sudoku

Postby creint » Tue Jul 27, 2021 11:44 am

1 layer of locked singles required
Digit 3 locked in g2diagonal\ -3g1r2c2 -> 3g1r2c3 and 3g1r9c2
Apparently no fully generalized intersections.

Hajime in your solver I wanted to remove that pencilmark but after Step it gets filled in again.
creint
 
Posts: 393
Joined: 20 January 2018

Re: double diagonal x sudoku

Postby Hajime » Tue Jul 27, 2021 1:54 pm

creint wrote:Apparently no fully generalized intersections.
Yes, SiSeSuSo eliminating methods are PER Sudoku.
creint wrote:Hajime in your solver I wanted to remove that pencilmark but after Step it gets filled in again.
Yes, it is recalculating the candidates when clicking a button: OneStep,Step,AllSteps. Was handy when adding digit as solved cell, not handy when eliminating candidates.
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân

Re: double diagonal x sudoku

Postby m_b_metcalf » Wed Jul 28, 2021 8:32 am

My program reports that this puzzle is not minimal, and that the following 13 clues are individually redundant:

Code: Select all
r1c7 r1c9 r2c4 r2c6 r4c1 r5c10 r7c2 r7c12 r8c3 r9c12 r10c11 r11c7 r12c6


This opens the possibility of removing various sets, leading to puzzles with fewer clues, for instance without r1c7, r7c2 and r11c7:
Code: Select all
........6...712....9.......8........3........4...................6...............
...............2.........5.........2........8........4.......3.....47...6.3......


The only symmetric pairs that can be removed are r1c7,r12c6 and r2c6,r11c7.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13622
Joined: 15 May 2006
Location: Berlin

Re: double diagonal x sudoku

Postby m_b_metcalf » Wed Jul 28, 2021 2:39 pm

Based on that grid, here are two new puzzles.

This one, with 19 clues and SE mid-range, has only 8 distinct values (no value 1):
Code: Select all
..7.8.3..6....2..9...6....7.......5....5....4.6..2....9............7........56...
....5....5....4....2.................7......8.56...............................4.

This one's very hard (~SE9), 22 clues:
Code: Select all
...........3.....91............6.2...2...........2....9..8.4......1........2.....
.6.2...87..........2......68.4...1..1........2......7..4...6...9....7......8.....


Mike

Edit: correct SE estimate.
Last edited by m_b_metcalf on Wed Jul 28, 2021 4:15 pm, edited 1 time in total.
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13622
Joined: 15 May 2006
Location: Berlin

Re: double diagonal x sudoku

Postby Hajime » Wed Jul 28, 2021 3:54 pm

m_b_metcalf wrote:This opens the possibility of removing various sets, leading to puzzles with fewer clues, for instance without r1c7, r7c2 and r11c7:
Code: Select all
........6...712....9.......8........3........4...................6...............
...............2.........5.........2........8........4.......3.....47...6.3......
The only symmetric pairs that can be removed are r1c7,r12c6 and r2c6,r11c7.

This one, with 19 clues and SE <= 5, has only 8 distinct values (no value 1):
Code: Select all
..7.8.3..6....2..9...6....7.......5....5....4.6..2....9............7........56...
....5....5....4....2.................7......8.56...............................4.

This one's very hard (~SE9), 22 clues:
Code: Select all
...........3.....91............6.2...2...........2....9..8.4......1........2.....
.6.2...87..........2......68.4...1..1........2......7..4...6...9....7......8.....


3 puzzles, but only the first one can be solved by SiSeSuSo using Forcing Nets.
The 2nd and 3rd only solvable with BF/BT.

So I am very curious what a solving path could be for the 2nd puzzle with SE<=5. Could you provide that?
User avatar
Hajime
 
Posts: 1375
Joined: 20 April 2018
Location: Fryslân

Re: double diagonal x sudoku

Postby m_b_metcalf » Wed Jul 28, 2021 4:14 pm

Hajime wrote:So I am very curious what a solving path could be for the 2nd puzzle with SE<=5. Could you provide that?

Sorry, I gave the wrong rating range, it's more like 7 or 8. I'll correct my post.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13622
Joined: 15 May 2006
Location: Berlin


Return to Sudoku variants