Dobrichev solver (fsss2) on Win32-bit

Programs which generate, solve, and analyze Sudoku puzzles

Dobrichev solver (fsss2) on Win32-bit

Postby Mathimagics » Thu Jan 10, 2019 2:33 pm

I am trying to compile a stripped down fsss2 under Windows 7.

I'm compiling with gcc/g++ (5.3). First problem encountered was with inlined intrinsics, eg _mm_testc_si128. I was getting "inline failed" errors, so I modified the GCC smmintrin.h header to remove the "always inline" directives.

Now it gets to the code gen stage, but issues a long series of " invalid instruction suffix for bsf" error messages.

I understand that GridChecker runs on Win32, and since I pulled fsss2 out of there originally, there would seem to be nothing intrinsically wrong with what I'm trying to do.

So I have either:

  • a compiler issue. I notice that most successful Win32 builds were using VC, not GCC. I do have VC (but generally try to avoid using it) so I will try compiling with that.
or
  • a CPU issue. My CPU is an AMD Phenom II. I find that enxio27 reported some problem compiling GridChecker on Win32 (AMD), and champagne said it could be a lack of full Intel instruction set support on certain AMD processors. This is at this post.

Or maybe both problems!

I'll try the VC compiler out. Meanwhile, any other suggestions?
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Dobrichev solver (fsss2) on Win32-bit

Postby dobrichev » Thu Jan 10, 2019 4:02 pm

A possible invalid suffix is ll (double small letter L for "long long", 64-bit integer). Dig there. Also GCC for Windows is something new to me. GCC is adopted to work under some environments that run under Windows, and possibly you hit a limitation/bug/feature in your environment.

In worst case this is replaceable by two 32-bit bsf instructions.
dobrichev
2016 Supporter
 
Posts: 1863
Joined: 24 May 2010

Re: Dobrichev solver (fsss2) on Win32-bit

Postby champagne » Thu Jan 10, 2019 4:18 pm

I did not compile fss2 with gcc, but I did it with my last version of code and I faced a problem solved by mladen Dobrichev

Using the option
-march=native
the compiler uses all available intrinsic instructions.

but if your cpu does not accept the code, compilation fails. I had the problem several years ago with an old AMD
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Dobrichev solver (fsss2) on Win32-bit

Postby Mathimagics » Thu Jan 10, 2019 8:06 pm

Thanks guys.

dobrichev wrote:GCC for Windows is something new to me

You're kidding! :lol:
Actually, I have been building C/C+ apps, and DLL's, etc with GCC compiler on Win32 and Win64 for years now! The port was made by the MinGW guys I think.

I guess you assumed that all those fsss2 solvers that I built for the umpteen Sudoku variants were done with MSVC, but I don't have that. VS costs money, and paying anything over $50 for software is against my religion! 8-)

Getting fsss2 compiled was really painless on Win64 (with Intel CPU), just used "-march=native" as champagne indicated. All of the GCC intrinsics provided in <immintrin.h> seem to be good.

But it gets really ugly when I try and build it on Win32.

I think I'll just have to give up on that. Perhaps I can just build a slower/dumber version of t_128.h using generic x86 32/64-bit operations - it doesn't have to be amazingly fast, it just has to work!

Thanks for trying to help!
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Dobrichev solver (fsss2) on Win32-bit

Postby champagne » Thu Jan 10, 2019 8:15 pm

Mathimagics wrote:But it gets really ugly when I try and build it on Win32.

I have poor skills in this field, but it seems to me that the standard option to-day in gcc is to deliver a 64 bits code. I did not have to put any parameter in the command line to compile in 64 bits mode.
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Dobrichev solver (fsss2) on Win32-bit

Postby Mathimagics » Fri Jan 11, 2019 2:55 am

.
Now that is interesting!

I only get clean compilation with -march=native. Otherwise many errors of the form "_mm_extract_epi64 was not declared in this scope". Ditto for the various intrinsic functions used in t_128.h.

My Win64 PC is brand-new, with close-to-latest Intel CPU. Definitely not an AMD issue, then! So why would this be so? :?:

OK, champagne, can you tell me the version of gcc you have (gcc --version), and also where/how you got it? I remember having to look around for gcc in a usable form for Win64, and only the MinGW/Msys people seemed to have this.

Meanwhile, I will investigate the compiler switch/defines issue to see if I can compile without -march==native like you can.
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Dobrichev solver (fsss2) on Win32-bit

Postby Mathimagics » Fri Jan 11, 2019 3:02 am

champagne wrote:I did not compile fsss2 with gcc, but I did it with my last version of code …


Sorry, what exactly were you compiling with gcc? Did it actually #include "t_128.h"?
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra

Re: Dobrichev solver (fsss2) on Win32-bit

Postby champagne » Fri Jan 11, 2019 3:46 am

Mathimagics wrote:
champagne wrote:I did not compile fsss2 with gcc, but I did it with my last version of code …


Sorry, what exactly were you compiling with gcc? Did it actually #include "t_128.h"?


I am not sure to be able to answer 100% to your question.

My son downloaded for me the software cygwin64. This is the batch window where I have the gcc compiler.
So far, I only compile to check whether my code is "gcc compatible", but likely in February, I should start tests on a LINUX platform.
I use the free Microsoft Visual Studio 2017 platform as main tool.

What I am compiling is located in this repository
skmpp2

you can find in the top part of the file sk_t.h most of the gcc issues having required some special definitions (99% done by mladen).
t128 is defined here, as T128, but this is only the union defining the 128 bit field.

The code using this T128 is mostly included in BF128 (bitfield128) part of the sk_bitfields.h file. Again, 90% of this code is directly derived from mladen original code, Some intrinsic code as here

inline unsigned char On(const int theBit) const { return _bittest64((long long*)&bf.u64[0], theBit); }

has been use to avoid the use of big lookup tables (an attempt to improve cache efficiency) but generally speaking, this is the last version of fss2

here below, theT128 union and the BF128 class

Hidden Text: Show
Code: Select all
typedef union T128 {// new definition closer to GINTx
   uint64_t    u64[2];
   uint8_t     u8[16];
   uint16_t    u16[8];
   uint32_t    u32[4];
   __m128i      u128;
} T128;


Code: Select all
class BF128 {
public:
   T128 bf;
   BF128() {}
   BF128(const BF128 &v) { bf.u128 = v.bf.u128; }
   BF128(const __m128i &v) { bf.u128 = v; }
   BF128(const T128 &v) { bf.u128 = v.u128; }

   inline void clear() { bf.u64[0] = bf.u64[1] = 0; }
   inline void SetAll_0() { bf.u64[0] = bf.u64[1] = 0; };
   inline void SetAll_1() { bf.u64[0] = bf.u64[1] = BIT_SET_64; };

   inline BF128 operator| (const BF128 &r) const { BF128 w; w.bf.u128 = _mm_or_si128(bf.u128, r.bf.u128); return w; }
   inline BF128 operator| (const __m128i r) const { BF128 w; w.bf.u128 = _mm_or_si128(bf.u128, r); return w; }
   inline void operator|= (const BF128& r) { bf.u128 = _mm_or_si128(bf.u128, r.bf.u128); }
   inline void operator|= (const __m128i r) { bf.u128 = _mm_or_si128(bf.u128, r); }

   inline BF128 operator& (const BF128 &r) const { BF128 w; w.bf.u128 = _mm_and_si128(bf.u128, r.bf.u128); return w; };
   inline BF128 operator& (const __m128i r) const { BF128 w; w.bf.u128 = _mm_and_si128(bf.u128, r); return w; }
   inline void operator&= (const BF128& r) { bf.u128 = _mm_and_si128(bf.u128, r.bf.u128); }
   inline void operator&= (const __m128i r) { bf.u128 = _mm_and_si128(bf.u128, r); }

   inline BF128 operator^ (const BF128 &r) const { BF128 w; w.bf.u128 = _mm_xor_si128(bf.u128, r.bf.u128); return w; }
   inline BF128 operator^ (const __m128i r) const { BF128 w; w.bf.u128 = _mm_xor_si128(bf.u128, r); return w; }
   inline void operator^= (const BF128& r) { bf.u128 = _mm_xor_si128(bf.u128, r.bf.u128); }
   inline void operator^= (const __m128i r) { bf.u128 = _mm_xor_si128(bf.u128, r); };

   inline BF128 operator- (const BF128 &r) const { BF128 w; w.bf.u128 = _mm_andnot_si128(r.bf.u128, bf.u128); return w; }
   inline BF128 operator- (const __m128i r) const { BF128 w; w.bf.u128 = _mm_andnot_si128(r, bf.u128); return w; }
   inline void operator-= (const BF128& r) { bf.u128 = _mm_andnot_si128(r.bf.u128, bf.u128); }
   inline void clearBits(const BF128& r) { bf.u128 = _mm_andnot_si128(r.bf.u128, bf.u128); }
   inline void operator-= (const __m128i r) { bf.u128 = _mm_andnot_si128(r, bf.u128); };

   inline void operator= (const BF128 &r) { bf.u128 = r.bf.u128; }
   inline void operator= (const void *p) { bf.u128 = _mm_loadu_si128((const __m128i*)p); }

   inline bool operator== (const BF128& r) const { return(bf.u64[0] == r.bf.u64[0] && bf.u64[1] == r.bf.u64[1]); }
   inline bool operator!= (const BF128 &r) const { return(bf.u64[0] != r.bf.u64[0] || bf.u64[1] != r.bf.u64[1]); };
   inline void MaskToBit(const int theBit) {
      register int R = theBit;      if (R >= 128)SetAll_1();
      else if (R <= 0)SetAll_0();
      else if (R < 64) {
         bf.u64[0] = 0;
         bf.u64[0] = (1 << R) - 1;
      }
      else {
         bf.u64[0] = 1;
         bf.u64[0] = (1 << (R - 64)) - 1;
      }
   }
   inline void Mask(const int theBit) { BF128 w; w.MaskToBit(theBit); *this &= w; }

#ifndef _MSC_VER
   inline void Set(const int theBit) {
      if (theBit < 64) {
         bf.u64[0] |= (uint64_t)1 << theBit;
      }
      else {
         bf.u64[1] |= (uint64_t)1 << (theBit - 64);
      }
   }
   inline void SetToBit(const int theBit) {
      if (theBit < 64) {
         bf.u64[1] = (uint64_t)0;
         bf.u64[0]=(uint64_t) 1<< theBit;
      }
      else {
         bf.u64[0] = (uint64_t)1;
         bf.u64[1] = (uint64_t)1 << (theBit-64);
      }
   }
   inline int On(const int theBit) const {
      if (theBit<64)   return  ((uint64_t)bf.u64[0] >> theBit) & 1;
      else return  ((uint64_t)bf.u64[1] >> (theBit-64)) & 1;
   }

   inline void Clear(const int theBit) {
      if (theBit < 64) {
         bf.u64[0] &= ~((uint64_t)1 << theBit)   ;
      }
      else {
         bf.u64[1] &=~( (uint64_t)1 << (theBit - 64));
      }
   }
#else
   inline void Set(const int theBit) { _bittestandset64((long long*)&bf.u64[0], theBit); }
   inline void SetToBit(const int theBit) { clear(); _bittestandset64((long long*)&bf.u64[0], theBit); }
   inline unsigned char On(const int theBit) const { return  _bittest64((long long*)&bf.u64[0], theBit); }
   inline void Clear(const int theBit) { _bittestandreset64((long long*)&bf.u64[0], theBit); }
#endif


   inline int Off(const int theBit) const { return !On(theBit); }
   inline int isBitSet(const int theBit) const { return !On(theBit); }// double definition to clear
   inline void setBit(const int theBit) { Set(theBit); }// double definition to clear
   inline void clearBit(const int theBit) { Clear(theBit); }// double definition to clear

   //  code to use in a 3 bands pattern calling using a cell 0-80
   inline int On_c(const int cell) const { return On(C_To128[cell]); }
   inline int Off_c(const int cell) const { return Off(C_To128[cell]); }
   inline void Set_c(const int cell) { Set(C_To128[cell]); }
   inline void Clear_c(const int cell) { Clear(C_To128[cell]); }
   inline void SetDiagX(const int theBit){      Set_c(C_transpose_d[From_128_To_81[theBit]]);   }
   void ClearDiag(int clear, int stack);
   void ClearRow(int clear, int row);
   void ClearCol(int clear, int col);

   inline bool isZero() const { return bf.u64[0] == 0 && bf.u64[1] == 0; }
   inline bool isEmpty() const { return bf.u64[0]==0 && bf.u64[1] == 0; }
   inline bool isNotEmpty() const { return bf.u64[0] != 0 || bf.u64[1] != 0; }

   inline int Count(){ return (int)(_popcnt64(bf.u64[0]) + _popcnt64(bf.u64[1])); }
   inline int Count96(){ return (int)(_popcnt64(bf.u64[0]) + _popcnt32(bf.u32[2])); }

   inline int isSubsetOf(const BF128 &s) const { return  _mm_testc_si128(s.bf.u128, bf.u128); }
   inline int isDisjoint(const BF128& r) const { return _mm_test_all_zeros(r.bf.u128, bf.u128); }
   inline int Disjoint(const BF128& r) const { return _mm_test_all_zeros(r.bf.u128, bf.u128); }
   inline int SupersetOf(const BF128 &s) const { return  _mm_testc_si128(bf.u128, s.bf.u128); }

   inline int SupersetOf81(const BF128 &s) const { BF128 w = s; w.Mask(81); return  SupersetOf(w); }
   inline int SupersetOf96(const BF128 &s) const { BF128 w = s; w.Mask(96); return  SupersetOf(w); }
   inline bool operator< (const BF128 &rhs) const {
      if (bf.u64[1] < rhs.bf.u64[1]) return true;
      if (bf.u64[1] > rhs.bf.u64[1]) return false;
      return bf.u64[0] < rhs.bf.u64[0];
   }
   inline int Compare(const BF128 &r) const {
      if (*this == r) return 0;
      if (bf.u64[1] == r.bf.u64[1]){
         if (bf.u64[0] < r.bf.u64[0]) return -1;
         else return 1;
      }
      if (bf.u64[1] < r.bf.u64[1]) return -1;
      else return 1;
   }

   inline void Convert3X27to81(const BF128 & rhs){
      register uint64_t R0 = rhs.bf.u32[0],
         R1 = rhs.bf.u32[1],
         R2 = rhs.bf.u32[2];
      R1 <<= 27; R0 |= R1;
      R1 = R2; R1 <<= 54;
      bf.u64[0] = R0 | R1;
      bf.u64[1] = R2 >> 10;
   }
   inline void Convert81to3X27(const T128 & rhs){
      register uint64_t R0 = rhs.u64[0],
         R1 = rhs.u64[1];
      bf.u32[0] = R0 & BIT_SET_27;
      R0 >>= 27;
      bf.u32[1] = R0 & BIT_SET_27;
      R0 >>= 27;
      R1 <<= 10;
      R0 |= R1;
      bf.u32[2] = R0 & BIT_SET_27;
      bf.u32[3] = 0;
   }
   
   inline int mask8() const { return _mm_movemask_epi8(bf.u128); }
   inline int getFirst96() const {
      uint32_t res;
      if (bf.u64[0]) {
         bitscanforward64(res, bf.u64[0]);
         return res;
      }
      if (bf.u32[2]) {
         bitscanforward(res, bf.u32[2]);
         return 64 + res;
      }
      return -1;
   }
   inline int getLastCell() const {
      uint32_t res;
      if (bf.u32[2]) {
         bitscanreverse(res, bf.u32[2]);
         return 54 + res;
      }
      if (bf.u32[1]) {
         bitscanreverse(res, bf.u32[1]);
         return 27 + res;
      }
      if (bf.u32[0]) {
         bitscanreverse(res, bf.u32[0]);
         return res;
      }
      return -1;
   }
   inline int getFirst128() const {
      uint32_t res;
      if (bf.u64[0]) {
         bitscanforward64(res, bf.u64[0]);
         return res;
      }
      if (bf.u64[1]) {
         bitscanforward64(res, bf.u64[1]);
         return res+64;
      }
      return -1;
   }
   inline int getFirstCell() const {
      uint32_t res;
      if (bf.u32[0]) {
         bitscanforward(res, bf.u32[0]);
         return res;
      }
      if (bf.u32[1]) {
         bitscanforward(res, bf.u32[1]);
         return 27 + res;
      }
      if (bf.u32[2]) {
         bitscanforward(res, bf.u32[2]);
         return 54 + res;
      }
      return -1;
   }
   inline int getLast128() const {
      uint32_t res;
      if (bf.u64[1]) {
         bitscanreverse64(res, bf.u64[1]);
         return res + 64;
      }
      if (bf.u64[0]) {
         bitscanreverse64(res, bf.u64[0]);
         return res;
      }
      return -1;
   }
   void Diag3x27(BF128 & r);
   inline void Store(USHORT * tstore){ memcpy(tstore, this, 16); }
   inline void Re_Load(USHORT * tstore){ memcpy(this, tstore, 16); }

   int Table3X27(int * r);// cell 0_80 as output
   int Table128(int * r);// cell 0_127 as output
   int Table64_0(int * r);//  0_63 as output
   int Table64_1(int * r);//  64_127 as output


   char * String3X(char * ws);
   char * String3X_Rev(char * ws);
   char * String128(char * ws);

};
champagne
2017 Supporter
 
Posts: 7465
Joined: 02 August 2007
Location: France Brittany

Re: Dobrichev solver (fsss2) on Win32-bit

Postby Mathimagics » Fri Jan 11, 2019 4:46 am

champagne wrote:I am not sure to be able to answer 100% to your question.


You have provided valuable information, thank you!

As dobrichev suggested, compiler limitations might be the answer here. Cygwin and MinGW are both Unix-environment simulations for Windows, but of course they are quite different to each other (cf the link below).

cygwin vs MinGW?

The key feature of the gcc compiler built under MinGW (for me) is that you can use gcc directly from Windows (CMD window), it's just another stand-alone Windows application, you don't need to be in the Unix shell (the "bash" window).

gcc built with Cygwin does have one advantage though, it's more likely to be up-to-date, as the MinGW gcc build is much harder to engineer, particularly for Win64 as I understand it. (The MinGW pre-built gcc I have for Win32 is v5.3.0, while for Win64 it is only v4.8.3)

So the fact that I need march=native when compiling with MinGW gcc is probably irrelevant, most likely an environmental issue.

Thank you for the code snippets, they could prove useful!
User avatar
Mathimagics
2017 Supporter
 
Posts: 1926
Joined: 27 May 2015
Location: Canberra


Return to Software