wapati wrote:There is a robust Jellyfish in this puzzle, as well as many smaller patterns.
- Code: Select all
. . 3 | . . . | . . 1
. 9 4 | . . . | . . .
. 7 . | 2 . 4 | 9 3 .
---------------------
. . . | . 3 . | 8 . 7
. 2 . | 4 . 8 | . 9 .
3 . 6 | . 9 . | . . .
---------------------
. 4 2 | 3 . 7 | . 8 .
. . . | . . . | 5 7 .
7 . . | . . . | 4 . .
After the basics, we get:
- Code: Select all
*--------------------------------------------------------------------*
| 28 56 3 | 569 78 569 | 27 4 1 |
| 12568 9 4 | 156 15678 3 | 267 256 568 |
| 1568 7 15 | 2 1568 4 | 9 3 568 |
|----------------------+----------------------+----------------------|
| 4 15A 9 | 156 3 1256 | 8 1256 7 |
| 15a 2 7 | 4 156A 8 | 3 9 56 |
| 3 8 6 | 7 9 125 | 12 125 4 |
|----------------------+----------------------+----------------------|
| 156 4 2 | 3 15- 7 | 16c 8 9 |
| 9 3 18 | 168 4 16 | 5 7 2 |
| 7 156a 158 | 1589 2 159 | 4 16C 3 |
*--------------------------------------------------------------------*
where a little multicoloring implies r7c5<>1.
[r7c5]-1-[r7c7]=1=[r9c8]-1-[r9c2]=1=[r4c2]-1-[r5c1]=1=[r5c5]-1-[r7c5]
But r7c5=5 implies r7c1<>5 and now we get an xy-chain:
6-[r9c2]-1-[r7c7]-6-[r7c1]-1-[r5c1]-5-[r9c5]-6, => r4c8<>6, which solves the puzzle.