- Code: Select all
3r4c1 - (3=24)r4c47 - 4r5c5 = 4r9c5 - 4r9c1
- 3r9c1
4r4c1 - r4c4 = 4r5c5 - (4=3)r9c5 - 3r9c1
- 4r9c1
3r4c1 - (3=24)r4c47 - 4r5c5 = 4r9c5 - 4r9c1
- 3r9c1
4r4c1 - r4c4 = 4r5c5 - (4=3)r9c5 - 3r9c1
- 4r9c1
*--------------------------------------------------------------*
| 6 2348 7 | 258 123 358 | 134 9 234 |
| 139 239 39 | 6 123 4 | 7 8 5 |
| 1348 2348 5 | 278 9 378 | 134 6 234 |
|--------------------+--------------------+--------------------|
|a34 5 6 |b24 8 1 | 23 7 9 |
| 7 489 489 | 3 24 6 | 28 5 1 |
| 2 38 1 | 59 7 59 | 6 4 38 |
|--------------------+--------------------+--------------------|
| 5 1 348 |c478 6 378 | 9 2 48 |
| 489 6 489 | 1 5 2 | 48 3 7 |
| 8-34 7 2 |c489 d34 389 | 5 1 6 |
*--------------------------------------------------------------*
Leren wrote:Fixed typo spotted by Marty in my other post. I think both chains are necessary, to prove the pattern. Once proved it becomes an accepted pattern and it's a one stepper remote pair move.
There was also a second way to prove the pattern:
- Code: Select all
*--------------------------------------------------------------*
| 6 2348 7 | 258 123 358 | 134 9 234 |
| 139 239 39 | 6 123 4 | 7 8 5 |
| 1348 2348 5 | 278 9 378 | 134 6 234 |
|--------------------+--------------------+--------------------|
|a34 5 6 |b24 8 1 | 23 7 9 |
| 7 489 489 | 3 24 6 | 28 5 1 |
| 2 38 1 | 59 7 59 | 6 4 38 |
|--------------------+--------------------+--------------------|
| 5 1 348 |c478 6 378 | 9 2 48 |
| 489 6 489 | 1 5 2 | 48 3 7 |
| 8-34 7 2 |c489 d34 389 | 5 1 6 |
*--------------------------------------------------------------*
(3=4) r4c1 - r4c4 = r79c4 - (4=3) r9c5 and (3-4) r4c1 = r4c4 - r79c4 = (4-3) r9c5
Leren
*-----------------*-----------------*-----------------*
| 6 2348 <7> | 258 123 358 | 134 9 234 |
| 139 239 39 | <6> 123 <4> | <7> <8> 5 |
| 1348 2348 <5> | 278 <9> 378 | 134 6 234 |
*-----------------*-----------------*-----------------*
| 3'4" <5> 6 | 24' <8> 1 | 23 7 <9> |
| <7> 489 489 | <3> 24" <6> | 28 5 <1> |
| <2> 3"8' 1 | 59 7 59 | 6 <4> 38 |
*-----------------*-----------------*-----------------*
| 5 <1> 348 | 478 <6> 378 | <9> 2 48 |
| 489 <6> 489 | <1> <5> <2> | 48 3 7 |
| 8-34 7 2 | 489 3"4' 389 | <5> 1 6 |
*-----------------*-----------------*-----------------*
So what I learn't from this puzzle is that two bi-value cells ab can have opposite parity if they don't share a Stack or Tier of boxes, but there are 3 Strong links on one of the digits (a or b) between them. I've never seen this mentioned in descriptions of Remote Pairs before.