Dan's Donner December 20,2013

Post puzzles for others to solve here.

Dan's Donner December 20,2013

Postby ArkieTech » Fri Dec 20, 2013 12:25 am

Code: Select all
 *-----------*
 |.3.|...|8..|
 |.2.|...|.43|
 |...|..1|625|
 |---+---+---|
 |...|29.|.5.|
 |..9|...|4..|
 |.6.|.84|...|
 |---+---+---|
 |541|9..|...|
 |39.|...|.7.|
 |..6|...|.8.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Donner December 20,2013

Postby Leren » Fri Dec 20, 2013 1:12 am

Code: Select all
*-----------------------------------------------------------------------*
| 16     3     B45      | 46     2456 Aa259a    | 8      19b    7       |
| 16     2     C57      | 8      56    D579     |E19c    4      3       |
| 9      8      47      | 347    34     1       | 6      2      5       |
|-----------------------+-----------------------+-----------------------|
| 4      1      3       | 2      9      6       | 7      5      8       |
| 8      5      9       | 137    13     37      | 4      6      2       |
| 7      6      2       | 5      8      4       | 3      19     19      |
|-----------------------+-----------------------+-----------------------|
| 5      4      1       | 9      7      8       | 2      3      6       |
| 3      9      8       | 146    12456 b25      |c15     7      14      |
| 2      7      6       | 134    1345   35      |d15-9   8      149     |
*-----------------------------------------------------------------------*

Kraken Cell r1c6:

2 r1c6 - (2=5) r8c6 - r8c7 = (5) r9c7;
||
5 r1c6 - r1c3 = (5-7) r2c3 = (7-9) r2c6 = (9) r2c7;
||
9 r1c6 - r1c8 = (9) r2c7; => - 9 r9c7; stte

Apparently I did not speak with forked antlers yesterday ! Will tomorrow's puzzle be called Dan's 'Dolph ?

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: Dan's Donner December 20,2013

Postby ArkieTech » Fri Dec 20, 2013 2:09 am

Code: Select all
 *--------------------------------------------------------------------*
 | 16     3      45     | 46     2456  *259    | 8     a19     7      |
 |b16     2      57     | 8     b56     579    | 9-1    4      3      |
 | 9      8      47     | 347    34     1      | 6      2      5      |
 |----------------------+----------------------+----------------------|
 | 4      1      3      | 2      9      6      | 7      5      8      |
 | 8      5      9      | 137    13     37     | 4      6      2      |
 | 7      6      2      | 5      8      4      | 3      19     19     |
 |----------------------+----------------------+----------------------|
 | 5      4      1      | 9      7      8      | 2      3      6      |
 | 3      9      8      | 146    12456 c25     |c15     7      14     |
 | 2      7      6      | 134    1345   35     | 159    8      149    |
 *--------------------------------------------------------------------*
Death Blossom
(1=9)r1c8-----------9r1c6
(1=6)r2c1-(6=5)r2c5-5r1c6
(1=5)r8c7-(5=2)r8c6-2r1c6 => -1r2c7;ste

or
(1=9)r1c8--9r1c6
(1=5)r2c15-5r1c6
(1=2)r8c76-2r1c6 => -1r2c7;ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Dan's Donner December 20,2013

Postby SteveG48 » Fri Dec 20, 2013 2:17 am

Code: Select all
 *--------------------------------------------------------------------*
 | 16     3      45     | 46     2456 cf259    | 8     b19     7      |
 |d16     2      57     | 8     e56     579    |a9-1    4      3      |
 | 9      8      47     | 347    34     1      | 6      2      5      |
 *----------------------+----------------------+----------------------|
 | 4      1      3      | 2      9      6      | 7      5      8      |
 | 8      5      9      | 137    13     37     | 4      6      2      |
 | 7      6      2      | 5      8      4      | 3      19     19     |
 *----------------------+----------------------+----------------------|
 | 5      4      1      | 9      7      8      | 2      3      6      |
 | 3      9      8      | 146    12456 g25     |h15     7      14     |
 | 2      7      6      | 134    1345   35     | 159    8      149    |
 *--------------------------------------------------------------------*



(1)r2c7 - {(9)r2c7 = r1c8 - r1c6}|{(1=6)r2c1 - (6=5)r2c5 - r1c6} = (2)r1c6 - (2=5)r8c6 -(5=1)r8c7 => -1 r2c7 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Donner December 20,2013

Postby pjb » Fri Dec 20, 2013 3:24 am

Code: Select all
a16     3      45     | 4-6    245-6 f259    | 8     b19     7     
 1-6    2      57     | 8     g56     579    |c19     4      3     
 9      8      47     | 347    34     1      | 6      2      5     
 ---------------------+----------------------+---------------------
 4      1      3      | 2      9      6      | 7      5      8     
 8      5      9      | 137    13     37     | 4      6      2     
 7      6      2      | 5      8      4      | 3      19     19     
 ---------------------+----------------------+---------------------
 5      4      1      | 9      7      8      | 2      3      6     
 3      9      8      | 146    12456 e25     |d15     7      14     
 2      7      6      | 134    1345   35     | 159    8      149   

(6=1)r1c1-(1=9)r1c8-(9=1)r2c7-(1=5)r8c7-(5=2)r8c6-(29=5)r1c6-(5=6)r2c5 => -6 r1c45, r2c1;  stte
                 |
               r1c6

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Donner December 20,2013

Postby JC Van Hay » Fri Dec 20, 2013 9:57 am

Another notation for the Kraken Cell r1c6 proving -1r2c7 :
Code: Select all
+-------------+-------------------+-----------------+
| 16    3  45 | 46   2456   (259) | 8     (19)  7   |
| (16)  2  57 | 8    (56)   579   | 9-1   4     3   |
| 9     8  47 | 347  34     1     | 6     2     5   |
+-------------+-------------------+-----------------+
| 4     1  3  | 2    9      6     | 7     5     8   |
| 8     5  9  | 137  13     37    | 4     6     2   |
| 7     6  2  | 5    8      4     | 3     19    19  |
+-------------+-------------------+-----------------+
| 5     4  1  | 9    7      8     | 2     3     6   |
| 3     9  8  | 146  12456  (25)  | (15)  7     14  |
| 2     7  6  | 134  1345   35    | 159   8     149 |
+-------------+-------------------+-----------------+
Chain [6] : (1=6)r2c1-(6=5)r2c5-5r1c6=*[(1=9)r1c8-(9=*2)r1c6-(2=5)r8c6-(5=1)r8c7] => 1r2c1=1r1c8=1r8c7 :=> -1r2c7
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Dan's Donner December 20,2013

Postby SteveG48 » Fri Dec 20, 2013 1:53 pm

It looks like all the solutions point in the same direction. The magic is at r1c6.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: Dan's Donner December 20,2013

Postby daj95376 » Fri Dec 20, 2013 5:00 pm

SteveG48 wrote:It looks like all the solutions point in the same direction. The magic is at r1c6.

My solver resorted to SINs in order to crack the puzzle. A SIN is a chain with memory/secondary eliminations that leads to a contradiction, which can often be folded back into the chain. The amount of memory used affects the desirability of a specific SIN solution. Often, a simple SIN can be translated into a Kraken Unit.

For this puzzle, a cursory examination of my solver's SINs show that most, if not all, of them use r1c6 one way or another.

Code: Select all
 +-----------------------------------------------------------------------+
 |  16     3     d45     |  46     2456  e259    |  8      19     7      |
 |  16     2     c57     |  8      56    b579    | a19h    4      3      |
 |  9      8      47     |  347    34     1      |  6      2      5      |
 |-----------------------+-----------------------+-----------------------|
 |  4      1      3      |  2      9      6      |  7      5      8      |
 |  8      5      9      |  137    13     37     |  4      6      2      |
 |  7      6      2      |  5      8      4      |  3      19     19     |
 |-----------------------+-----------------------+-----------------------|
 |  5      4      1      |  9      7      8      |  2      3      6      |
 |  3      9      8      |  146    12456 f25     | g15     7      14     |
 |  2      7      6      |  134    1345   35     |  159    8      149    |
 +-----------------------------------------------------------------------+
 # 44 eliminations remain

 SIN:  1r2c7  9r2c6  7r2c3  5r1c3  2r1c6  =>  [r8c67]=5

 discontinuous loop w/memory:

 (1-9)r2c7 = (9*-7)r2c6 = (7-5)r2c3 = (5)r1c3 - (*95=2)r1c6 - (2=5)r8c6 - (5=1)r8c7 - (1)r2c7

 -or-

 Kraken Cell: (259)r1c6

 (2)r1c6 - (2=5)r8c6 - (5=1)r8c7             ( -1)r2c7
     ||
 (5)r1c6 - (5)r1c3 = (5-7)r2c3 = (7-9)r2c6 = (9-1)r2c7
     ||
 (9)r1c6                         ( -9)r2c6 = (9-1)r2c7
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Dan's Donner December 20,2013

Postby tlanglet » Fri Dec 20, 2013 5:57 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 16     3      45     | 46     2456   259    | 8      19     7      |
 | 16     2      57     | 8      56     579    | 19     4      3      |
 | 9      8      47     | 347    34     1      | 6      2      5      |
 |----------------------+----------------------+----------------------|
 | 4      1      3      | 2      9      6      | 7      5      8      |
 | 8      5      9      | 137    13     37     | 4      6      2      |
 | 7      6      2      | 5      8      4      | 3      19     19     |
 |----------------------+----------------------+----------------------|
 | 5      4      1      | 9      7      8      | 2      3      6      |
 | 3      9      8      |*146    12456  25     | 15     7     *14     |
 | 2      7      6      |*134    1345   35     | 159    8     *149    |
 *--------------------------------------------------------------------*


I had very little time this morning so I accepted my first solution..............

AUR(14)r89c49 with SIS 6r8c4, 3r9c4, 9c9c9 => r1c4=4
6r8c4-(6=4)r1c4
||
3r9c4-(3=5)r9c6-(5=29)r81c6-(9=164)r1c814
||
9r9c9-(9=1)r6c9-r6c8=r1c8-(1=64)r1c14

The down side of the AUR is that it did not complete the puzzle; a BUG+1 making r8c5=2 is needed to finish the game.

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Dan's Donner December 20,2013

Postby blue » Fri Dec 20, 2013 6:05 pm

SteveG48 wrote:It looks like all the solutions point in the same direction. The magic is at r1c6.

Here's something a little different:

Code: Select all
+---------------+--------------------+----------------+
| 16    3  45   | 46   2456    259   | 8      19  7   |
| (16)  2  (57) | 8    -5(6)   59(7) | (19)   4   3   |
| 9     8  47   | 347  34      1     | 6      2   5   |
+---------------+--------------------+----------------+
| 4     1  3    | 2    9       6     | 7      5   8   |
| 8     5  9    | 137  13      (37)  | 4      6   2   |
| 7     6  2    | 5    8       4     | 3      19  19  |
+---------------+--------------------+----------------+
| 5     4  1    | 9    7       8     | 2      3   6   |
| 3     9  8    | 146  12456   25    | 15     7   14  |
| 2     7  6    | 134  134(5)  (35)  | 1(59)  8   149 |
+---------------+--------------------+----------------+

Kraken row (5r9)

5r9c5
||
5r9c6 - 3r9c6 = (3-7)r5c6 = 7r2c6 - (7=5)r2c3
||
5r9c7 - 9r9c7 = (9-1)r2c7 = (1-6)r2c1 = 6r2c5

=> -5r2c5; stte
blue
 
Posts: 1054
Joined: 11 March 2013

Re: Dan's Donner December 20,2013

Postby Marty R. » Fri Dec 20, 2013 9:15 pm

Code: Select all
+---------+---------------+------------+
| 16 3 45 | 46  2456  259 | 8   19 7   |
| 16 2 57 | 8   56    579 | 19  4  3   |
| 9  8 47 | 347 34    1   | 6   2  5   |
+---------+---------------+------------+
| 4  1 3  | 2   9     6   | 7   5  8   |
| 8  5 9  | 137 13    37  | 4   6  2   |
| 7  6 2  | 5   8     4   | 3   19 19  |
+---------+---------------+------------+
| 5  4 1  | 9   7     8   | 2   3  6   |
| 3  9 8  | 146 12456 25  | 15  7  14  |
| 2  7 6  | 134 1345  35  | 159 8  149 |
+---------+---------------+------------+

Play this puzzle online at the Daily Sudoku site

Not 100% sure of the validity, but I saw something similar yesterday.

6r2c5=(6-1)r2c1=1r2c7-(1=6)r2c1-(6=5)r2c5=>r2c5=5
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Donner December 20,2013

Postby Luke » Fri Dec 20, 2013 9:38 pm

Marty R. wrote:
Code: Select all
+---------+---------------+------------+
| 16 3 45 | 46  2456  259 | 8   19 7   |
| 16 2 57 | 8   56    579 | 19  4  3   |
| 9  8 47 | 347 34    1   | 6   2  5   |
+---------+---------------+------------+
| 4  1 3  | 2   9     6   | 7   5  8   |
| 8  5 9  | 137 13    37  | 4   6  2   |
| 7  6 2  | 5   8     4   | 3   19 19  |
+---------+---------------+------------+
| 5  4 1  | 9   7     8   | 2   3  6   |
| 3  9 8  | 146 12456 25  | 15  7  14  |
| 2  7 6  | 134 1345  35  | 159 8  149 |
+---------+---------------+------------+

Play this puzzle online at the Daily Sudoku site

Not 100% sure of the validity, but I saw something similar yesterday.

6r2c5=(6-1)r2c1=1r2c7-(1=6)r2c1-(6=5)r2c5=>r2c5=5

You have demonstrated that (6)r2c5 and (5) in the same cell cannot both be false, one must be true. Since it's a bivalue cell, that's something you already knew. No elimination. Once basics are done you will have a hard time ever finding an elimination without "leaving the house."

What did you see yesterday?
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Re: Dan's Donner December 20,2013

Postby pjb » Fri Dec 20, 2013 10:02 pm

Another way to view it is a continuous nice loop with no eliminations.
Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: Dan's Donner December 20,2013

Postby Marty R. » Fri Dec 20, 2013 10:45 pm

What did you see yesterday?


Luke, it was this, which may not be the same, but it looks to me like it's saying that if r7c2 is not 3, then it's <>4=3.

post232280.html#p232280
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Dan's Donner December 20,2013

Postby Luke » Sat Dec 21, 2013 1:21 am

Marty R wrote:... but it looks to me like it's saying that if r7c2 is not 3, then it's <>4=3.
post232280.html#p232280

Well, there's your problem, you listened to tlanglet :!:

The short answer: You gotta get outta the house more often, man. If your basics are correct, you will never find an elimination by going in circles in a single row, column or box.

The long answer, since I'm stuck here holding purses while the girls Xmas shop:

Ted's conclusion was r7c2<>4, so =3 would follow, sure. But look at what he really proved:

Code: Select all
 *-----------------------------------------------------------*
 | 8     6     149   | 5     2     349   | 13    139   7     |
 | 3     5     49    | 8     1     7     | 49    2     6     |
 | 7     14    2     | 6     39    349   | 5     1389  48    |
 |-------------------+-------------------+-------------------|
 | 6     9     5     | 23    8     23    | 7     4     1     |
 | 4    b13    138   | 9     7     6     | 2    c38    5     |
 | 2     7     38    | 4     5     1     |d38    6     9     |
 |-------------------+-------------------+-------------------|
 | 5    a3-4   6     | 237   39    239   |e18    178  f48    |
 | 1     8     34    | 37    6     5     | 49    79    2     |
 | 9     2     7     | 1     4     8     | 6     5     3     |
 *-----------------------------------------------------------*

3r7c2=3r5c2-(3=8)r5c8-r6c7=r7c7-(8=4)r7c9 => r7c2<>4

If you look at only the first and last nodes you'll get all the information needed.

3r7c2=3r5c2-(3=8)r5c8-r6c7=r7c7-(8=4)r7c9
...simply (3)r7c2=(4)r7c9. One must be true, it doesn't matter which one, the conclusion is the same, one contestant is going home: r7c2<>4. You can make it r7c2<>4=3 if you want, some do. That's part of the conclusion, not part of the chain.

You wrote:
6r2c5=(6-1)r2c1=1r2c7-(1=6)r2c1-(6=5)r2c5=>r2c5=5
... simply (6)r2c5=(5)r2c5. One must be true, but you already knew that. 6 doesn't eliminate 5, and 5 doesn't eliminate 6, nothing gets pinched off and ...

OK, they're back with their plunder. Isn't there a bar in this godforsaken mall?
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Next

Return to Puzzles