consecutive irregular jigsaw sudoku

For fans of Killer Sudoku, Samurai Sudoku and other variants

consecutive irregular jigsaw sudoku

Postby urhegyi » Wed Aug 30, 2023 1:42 pm

Image
Can sisesuso solve this and what's the syntax to input?

I think like this:
Code: Select all
#1//B4,JSCS
.....................................4.....8.....2.........................4.....
.....1..0..1.1...0........0...1..1.0...11...011......01....1..01...1...0.1.1....0
..1..............1.11..................1..1.111......1....1............1000000000
112222333111122333144152236144452336444556666745558669775588969778889999777788899
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: consecutive irregular jigsaw sudoku

Postby Hajime » Wed Aug 30, 2023 3:48 pm

Yes urhegyi. The puzzle syntax is ok.
And it is solvable using only basic methods (pointing/claiming and hidden/naked subsets) and a lot of ConSecutive constraint rule-eliminations.

The puzzle with the same solution AND the same jigsaw-pieces AND the same CS-dots with only 1 given: r2c5=3 is much much much harder
User avatar
Hajime
 
Posts: 1391
Joined: 20 April 2018
Location: Fryslân

Re: consecutive irregular jigsaw sudoku

Postby Hajime » Wed Aug 30, 2023 7:25 pm

I just found out: There is also a solution with r2c5=7 as the only given.
There are no more solutions with this jigsaw-pieces and this CS-dots. So only 2 solutions
Solutions:
r2c5=3: 536297841817634295472918536283541769941765382765829413659382174324176958198453627
r2c5=7: 574813269293476815638192574827569341169345728345281697451728936786934152912657483
User avatar
Hajime
 
Posts: 1391
Joined: 20 April 2018
Location: Fryslân

Re: consecutive irregular jigsaw sudoku

Postby urhegyi » Wed Aug 30, 2023 9:15 pm

Nice find:
The first puzzle:
Code: Select all
#1//B4,JSCS
.....................................4.....8.....2.........................4.....
.....1..0..1.1...0........0...1..1.0...11...011......01....1..01...1...0.1.1....0
..1..............1.11..................1..1.111......1....1............1000000000
112222333111122333144152236144452336444556666745558669775588969778889999777788899

has an equivalent puzzle from the other solution grid:
Code: Select all
#1//B4,JSCS
.....................................6.....2.....8.........................6.....
.....1..0..1.1...0........0...1..1.0...11...011......01....1..01...1...0.1.1....0
..1..............1.11..................1..1.111......1....1............1000000000
112222333111122333144152236144452336444556666745558669775588969778889999777788899
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: consecutive irregular jigsaw sudoku

Postby urhegyi » Thu Aug 31, 2023 8:08 am

Hajime wrote:I just found out: There is also a solution with r2c5=7 as the only given.
There are no more solutions with this jigsaw-pieces and this CS-dots. So only 2 solutions
Solutions:
r2c5=3: 536297841817634295472918536283541769941765382765829413659382174324176958198453627
r2c5=7: 574813269293476815638192574827569341169345728345281697451728936786934152912657483

Each digit x in solution 1 is replaced by his complement(10-x) in solution 2.
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: consecutive irregular jigsaw sudoku

Postby urhegyi » Thu Aug 31, 2023 5:03 pm

Another one:
Image
Code: Select all
#1//B4,JSCS
7.......5.......1...7...................3...............6.............8.9.......1
.....1..0..111...0.....11.0..1....10..1.1...01......101...1...0........0...1.1..0
..1.1....11.1..1..........111...111..11..1......11....1.....1...11..11..000000000
111123333144223323114222223114455553444456666755556688799999688797799668777798888

Edit: the 9 clues decide which of the 2 possible(complementary) solutions is the correct one.
362749815581234697493158762817695243925476138236817954674923581759381426148562379
748361295529876413617952348293415867185634972874293156436187529351729684962548731
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: consecutive irregular jigsaw sudoku

Postby Hajime » Thu Aug 31, 2023 6:56 pm

Each digit x in solution 1 is replaced by his complement(10-x) in solution 2.

So only 1 given (except 5) needed to determine the solution.
User avatar
Hajime
 
Posts: 1391
Joined: 20 April 2018
Location: Fryslân


Return to Sudoku variants