Okay, even if I further restrict that [91] can only appear as a 2-level vertical sequence (i.e. [9135] & [5791] are both not allowed), I found no fewer than
FIVE solutions for the Black Level.
Triple click to see the solutions I wrote:Red Level
.........
.........
..4...6..
.........
.........
.........
..5...4..
.........
.........
Green Level
.........
.........
..36.75..
..54.86..
.........
..67.54..
..45.63..
.........
.........
Blue Level
.........
.697.182.
.125.643.
.843.759.
.........
.756.438.
.934.521.
.218.976.
.........
Black Level (5 solutions!)
245831769
738629514
691475328
173296485
826547931
954183276
582364197
319758642
467912853
347812569
258639714
691475328
173296485
825147936
964583271
582364197
419728653
736951842
437812569
258639714
691475328
173296485
825147936
964583271
582364197
319758642
746921853
437821569
258639714
691475328
173296485
825147936
964583271
582364197
319758642
746912853
735812964
248639715
691475328
173256489
826947531
954183276
582364197
419728653
367591842
This is the pencilmark state for the Black Level before one has to guess away for one of the five solutions:
+-------------+-------------+-----------+
| 2347 34 57 | 8 123 12 | 579 6 49 |
| 27 345 8 | 6 23 9 | 57 1 45 |
| 6 9 1 | 4 7 5 | 3 2 8 |
+-------------+-------------+-----------+
| 1 7 3 | 2 59 6 | 4 8 59 |
| 8 2 56 | 159 4 7 | 59 3 16 |
| 9 56 4 | 15 8 3 | 2 7 16 |
+-------------+-------------+-----------+
| 5 8 2 | 3 6 4 | 1 9 7 |
| 34 1 9 | 7 25 8 | 6 45 23 |
| 347 346 67 | 59 1259 12 | 8 45 23 |
+-------------+-------------+-----------+
However, you can make it unique (sort of) by imposing one or both of the following 2 constraints:
1. The Black Level must be a Windoku (like the Blue Level)
2. Vertical numbers not only must form increasing sequences, but must form
continuous increasing sequences e.g. [1234], [567].
In that case the unique solution grid for the Black Level is the 2nd one above.
As a matter of fact, from that Black Level solution one can complete the 3 levels above canonically by repeatingly adding one to each cell and converting the 10s to 1s:
Triple click to see the canonical solutions I wrote:Black Level
347812569
258639714
691475328
173296485
825147936
964583271
582364197
419728653
736951842
Blue Level
458923671
369741825
712586439
284317596
936258147
175694382
693475218
521839764
847162953
Green Level
569134782
471852936
823697541
395428617
147369258
286715493
714586329
632941875
958273164
Red Level
671245893
582963147
934718652
416539728
258471369
397826514
825697431
743152986
169384275