wapati wrote:This too. Unique patterns are short cuts. (This too may be too easy.)
Well, they may be the only pattern way. You decide?
- Code: Select all
8 9 .|. . .|. 6 7
. . .|. 9 .|. . .
. . 4|. . .|5 . .
-----+-----+-----
4 . .|5 . 3|. . 2
1 . .|7 . 6|. . 3
. . 3|. . .|1 . .
-----+-----+-----
. . 6|3 . 2|7 . .
. . 5|6 . 8|3 . .
. . .|. 4 .|. . .
With 3D-multicoloring from:
- Code: Select all
.------------.------------.------------.
| 8 9 12 | 124 3 5 | 24 6 7 |
| 56 56 127| 124 9 147| 8 3 14 |
| 37 237 4 | 8 6 17 | 5 129 19 |
:------------+------------+------------:
| 4 678 789| 5 1 3 | 69 78 2 |
| 1 258 289| 7 28 6 | 49 45 3 |
| 56 278 3 | 49 28 49 | 1 78 56 |
:------------+------------+------------:
| 9 14 6 | 3 5 2 | 7 14 8 |
| 2 14 5 | 6 7 8 | 3 149 149|
| 37 378 78 | 19 4 19 | 26 25 56 |
'------------'------------'------------'
we get the chain:
[r5c2]=5=[r5c8]-5-[r9c8]-2-[r3c8]=2=[r3c2]-2-[r5c2]
implying r5c2<>2. Continuing with this same line of coloring, one then obtains:
[r5c3]-9-[r5c7]-4-[r1c7]-2-[r3c8]=2=[r3c2]-2-[r6c2]=2=[r5c3]
and so r5c3<>9, which solves the puzzle.
Alternatively, to avoid a deadly pattern in r39c12[37], one obtains r39c2<>7. Locked candidates then implies r4c3<>7. The potential deadly pattern in r46c28[78] then implies that r46c2<>8. To avoid yet another deadly pattern, this time in r56c25[28], we cannot have r5c2=8 and r6c2=2, so we get:
[r5c2]-8|2-[r6c2]-7-[r6c8]-8-[r6c5]-2-[r5c5]-8-[r5c2]
giving us r5c2<>8, which solves the puzzle.