Wapati wrote:Whew, what to say. Emm, lots of work, pattern wise. Fins, for true.
- Code: Select all
*-----------------------------------------------------*
| 4 1 5 | 2 89 6 | 3 7 89 |
| 7 389 2 | 389 5 4 | 1 69 689 |
| 389 6 389 | 1 7 389 | 5 4 2 |
|-----------------+-----------------+-----------------|
| 6 289 7 | 5 1 89 | 29 3 4 |
| 2389 4 389 | 6 389 7 | 29 1 5 |
| 1 5 39 | 39 4 2 | 6 8 7 |
|-----------------+-----------------+-----------------|
| 2389 7 1 | 389 26 389 | 4 5 69 |
| 5 29 4 | 7 26 1 | 8 69 3 |
| 389 389 6 | 4 389 5 | 7 2 1 |
*-----------------------------------------------------*
At least one of {r3c1|r5c3|r7c1|r7c4|r9c5} must be "3". But:
[r7c6](-3-[r7c14|r9c5])-3-[r3c6]=3=[r2c4]-3-[r2c2]=3=[r9c2]-{ATILA:
[r3c3]-3-[r3c1]=3=[r5c3]-3-[r3c3]}-3-[r3c3]-{ATILA(89): r4c2|r2c2|
|r3c3|r3c6|r4c6}=2=[r4c2]-2-[r5c1]=2=[r7c1]-{TILA(9): r9c1|r9c5|r1c5|
|r3c6|r3c3|r2c2|r8c2}.
So, r7c6<>3. After that:
[r9c5]=3|2=[r4c2]-2-[r5c1]=2|3=[r5c3]-3-[r5c5]=3=[r9c5],
which implies r9c5=3 and the puzzle is solved.
Carcul