udosuk wrote:claudiarabia wrote:There is an UR Type 1 easy to spot which solves the puzzle.
The UR type 1 might be easy to spot, but I can't find it...

Any hint on the UR type 1?
 
You can see the UR type 1 also running the puzzle through the SE. When SE shows the bi-directional y-cycle you can see the Rectangle. I had my own special way through this puzzle. For instance just after placing some singles you may spot also an xy-wing. SE makes some pointing coming to the same elimination. Here is my way.
The grid shows the situation before Step 11 (UR Type 1) is made.
- Code: Select all
 *-----------------------------------------------------------*
 | 2357  23    58    | 359   4     1239  | 19    78    6     |
 | 347   9     58    | 35    6     13    | 14    2     78    |
 | 24    6     1     | 8     29    7     | 3     45    59    |
 |-------------------+-------------------+-------------------|
 | 359   8     4     | 69    1     69    | 7     35    2     |
 | 6     37    79    | 2     5     8     | 49    34    1     |
 | 59    1     2     | 7     3     4     | 8     6     59    |
 |-------------------+-------------------+-------------------|
 | 29    47    3     | 1     29    5     | 6     78    478   |
 | 1     5     67    | 346   8     36    | 2     9     347   |
 | 8     24    69    | 3469  7     2369  | 5     1     34    |
 *-----------------------------------------------------------*
 
I had made the following Steps
After the usual pointing, claiming, setting singles:
1.swordfish in r367 c158 upon the 9
2.swordfish in r346 c189 upon the 5 -->r9c7=5
3.xy-wing eliminating 6 in r12c6 (wing-cells r5c5, r4c6, r2c5)
4.naked triplet in r125c8 consisting of 149
5.hidden pair in r36c9 consisting of 59
6.Skycraper in r3c15/c6r19 upon 2 eliminating 2 in r9c1 => r9c1 =8
7.naked triplet in r589c3 consisting of 679
8.skyscraper in r2c19/c8r17 upon 7 eliminating 7 in r7c1
9.naked pair in r7c15 consisting of 29
10.X-wing upon 2 in r19c25 eliminating 2 in r1c1
11.UR type 1 in r37c15 upon 29 eliminating 2 in r3c1
Then the puzzle is solved.