coloin wrote:If there can be a 2 at r2c4....why cant there be a 3 at r2c4 ?
Good question !
With 4M grids more, I didn't find any...
I will try to post an updated complete table soon.
JPF
coloin wrote:If there can be a 2 at r2c4....why cant there be a 3 at r2c4 ?
kjellfp wrote:Before the counting, all 416-band groups were generated, and their symmetry group stored. I also store enough information making it possible to permute any band back to its class representative.
378 378 414 , 405 405 416 587426193294381756631759428163294587842567319975138264726813945458972631319645872
381 408 411 , 400 402 407 264759183978431652513682749186975234395264871427813965851397426632148597749526318
386 404 404 , 390 399 402 659217438471983625238465917314798562567321849982654371825146793143579286796832154
123|456|789
45.|...|...
...|...|...
123|456|789
45.|.89|...
...|...|...
---+---+---
2..|...|...
...|...|...
...|...|...
---+---+---
...|...|...
...|...|...
...|...|...
381 408 411 , 400 402 407 264759183978431652513682749186975234395264871427813965851397426632148597749526318
386 404 404 , 390 399 402 659217438471983625238465917314798562567321849982654371825146793143579286796832154
coloin wrote:Thanks for that confirmation !
If I'm not mistaken these two grids might have a 3 at r2c4 [according to the readout of 381 and 386]
But the min lex i dont think is fully performed on the index416 representative ?
- Code: Select all
381 408 411 , 400 402 407 264759183978431652513682749186975234395264871427813965851397426632148597749526318
386 404 404 , 390 399 402 659217438471983625238465917314798562567321849982654371825146793143579286796832154
I can confirm that r2c4 wont be an 8 [bands 412-416]
C
123456789457189623689723145235614978764895312891372456342561897576948231918237564
123456789457189623698273154235647891769831542841592367384915276512764938976328415
*-----------------------*
| 1 2 3 | 4 5 6 | 7 8 9 |
| 4 5 7 | 3 8 9 | . . . |
| . . . | . . . | . . . |
|-------+-------+-------|
| 2 . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
|-------+-------+-------|
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
*-----------------------*
Red Ed wrote:OK, done some coding rather than some thinking. It seems likely that all min-lex grids have this form:Will have a think overnight about how one might prove that that is the best possible (if indeed it is).
- Code: Select all
123|456|789
45.|.89|...
...|...|...
---+---+---
2..|...|...
...|...|...
...|...|...
---+---+---
...|...|...
...|...|...
...|...|...
123456789457189236896327514275948361314562897968713425539871642641235978782694153
123456789457189326689372415296738541348591672571264893715943268832617954964825137
123456789457189236689723514231967458578214693964835127316578942742391865895642371
123456789457189236689723154234697815761835492895214673348972561512368947976541328
123456789457189263968327145234798651619532874785641392391874526572963418846215937
123456789456789132789123546237964851845217963961835427374592618512678394698341275
Really? I missed the proof that r2c5,6 = 8,9 ... can you point me to that please.JPF wrote:It has already been proved that these 14 cells are fixed in the min-lex grids.
Interesting ... at least now I think I understand what this thread is trying to achieve!Can a min-lex grid have r2c4=3 ?
What are the minimal and the maximal min-lex grids ?
123456789456789123789123456231564897564897231897231564312645978645978312978312645
Red Ed wrote:The minimum min-lex grid is obviously the canonical grid:
- Code: Select all
123456789456789123789123456231564897564897231897231564312645978645978312978312645
123456789456789123789123456214365897365897214897241635531672948642938571978514362
123456789457289631698317254245178396731964825986523417312645978574892163869731542
daJ95376 wrote:According to gsf's solver, the canonical form of your grids have [r2c4]=1.
1 2 3 | 4 5 6 | 7 8 9
4 5 6 | 7 8 9 | 1 2 3
7 8 9 | 1 2 3 | 4 5 6
-------+-------+-------
2 1 4 | 3 6 5 | 8 9 7
3 6 5 | 8 9 7 | 2 1 4
8 9 7 | 2 1 4 | 3 6 5
-------+-------+-------
5 3 1 | 6 4 2 | 9 7 8
6 4 2 | 9 7 8 | 5 3 1
9 7 8 | 5 3 1 | 6 4 2
min-lex: 123456789456789123789123456214365897365897214897214365531642978642978531978531642
JPF: 123456789456789123789123456214365897365897214897241635531672948642938571978514362
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^