AndrewStuart wrote:This is a false elimination but it conforms the rules as laid out:
- Code: Select all
.....17....4....56.2.73....6..3..1...8..6..4...2..9..5....73.6.95....4....35.....
ALS Aligned Pair (r27c2, r6c1458): : r6c2|r2c1 => r6c2<>4
+-------------------+--------------------+------------------+
| 358 39 5689 | 46 45 1 | 7 289 2489 |
| *17 #17 4 | 289 289 28 | 3 5 6 |
| 58 2 5689 | 7 3 456 | 89 189 1489 |
+-------------------+--------------------+------------------+
| 6 479 579 | 3 2458 24578 | 1 2789 2789 |
| 1357 8 1579 | 12 6 257 | 29 4 2379 |
| @1347 -1347 2 | @148 @148 9 | 6 @378 5 |
+-------------------+--------------------+------------------+
| 1248 #14 18 | 12489 7 3 | 5 6 1289 |
| 9 5 178 | 1268 128 268 | 4 12378 12378 |
| 12478 6 3 | 5 12489 248 | 289 12789 12789 |
+-------------------+--------------------+------------------+
1/7 in the stem can see 1s and 7s in both ALSs and 4 is only common candidate not in the stem but in boths ALSs. However, 4 is the solution to r6c2.
For the * ALS, all the 7s see all the 7s in the # ALS ... but all the 1s don't see all the 1s in the @ ALS. Therefore if r2c1=1, the @ ALS still has five candidates -- 13478 -- for four cells. Four of the five candidates would be used but the digit 4 might not be one of them.
[edit: poor English corrected]