A(36)----------6---------B(69)
| |
| |
|
* ---E(36)--6--D(67) 9
\ |
7 |
\ |
C(79)
A(36)----------6---------B(69)
| |
| |
6 9
| |
| |
D(67)----------7---------C(79)
5.2..9.......1..5.1..4..8....8..4..7.7..6....2..8..3....1..2..8....3..1.4....156.
3-valued ALS Aligned Pair (r47c1, r4c17): r2c1|r7c7 => r2c1<>3
+-------------------+-----------------+---------------------+
| 5 3468 2 | 367 78 9 | 146 347 1346 |
| -3678 3469 3679 | 2367 1 368 | 24679 5 23469 |
| 1 369 3679 | 4 25 356 | 8 2379 369 |
+-------------------+-----------------+---------------------+
|A&D(36) 356 8 | 1 259 4 | B(69) 29 7 |
| 9 7 4 | 23 6 35 | 12 8 125 |
| 2 1 56 | 8 59 7 | 3 49 4569 |
+-------------------+-----------------+---------------------+
| D(367) 3569 1 | 569 4 2 | C(79) 379 8 |
| 78 259 5679 | 5679 3 68 | 2479 1 249 |
| 4 2389 379 | 79 78 1 | 5 6 239 |
+-------------------+-----------------+---------------------+
5-valued Death Blossom (r79c1|r9c3|r7c2, r7c289): r9c9 => r7c5<>7,r8c2<>7
+---------------------+------------------+--------------------+
| 356 4 1356 | 689 159 1689 | 578 2 67 |
| 9 578 567 | 24 245 68 | 1 4568 3 |
| 56 18 2 | 3 14 7 | 9 48 56 |
+---------------------+------------------+--------------------+
| 2567 9 3567 | 1 2368 4 | 23578 368 2567 |
| 8 12357 13567 | 269 236 39 | 357 1356 4 |
| 2346 123 346 | 7 2368 5 | 238 9 126 |
+---------------------+------------------+--------------------+
| 47# 37#% 8 | 5 3479- 2 | 6 13% 19% |
| 1 2357- 9 | 46 467 36 | 2345 35 8 |
| 2345# 6 345# | 89 1349 18 | 234 7 259* |
+---------------------+------------------+--------------------+
356 4 1356 | 689 159 1689 | 578 2 67
9 578 567 | 24 245 68 | 1 4568 3
56 18 2 | 3 14 7 | 9 48 56
---------------------+------------------+--------------------
2567 9 3567 | 1 2368 4 | 23578 368 2567
8 12357 13567 | 269 236 39 | 357 1356 4
2346 123 346 | 7 2368 5 | 238 9 126
---------------------+------------------+--------------------
47B 37B 8 | 5 3479- 2 | 6 13D 19D
1 2357- 9 | 46 467 36 | 2345 35 8
2345A 6 345A | 89 1349 18 | 234 7 259C
Sets: A = {r9c13} = {2345}
B = {r7c12} = {347}
C = {r9c9} = {259}
D = {r7c89} = {139}
Mike Barker wrote:Okay so I don't feel so bad about "Death Blossom". An Almost Sue de Coq? Brilliant observation, but I don't think its going to catch on!
347B 347B 8 | 5 3479- 2 | 6 139D 139D
1 2357- 9 | 46 467 36 | 2345 35 8
2345A 6 2345A | 89 1349 18 | 234 7 259C
347AD 347AD 8 | 5 3479- 2 | 6 139B 139B
1 2357- 9 | 46 467 36 | 2345 35 8
2345D 6 2345D | 89 1349 18 | 234 7 259C
347AB 347AB 8 | 5 3479- 2 | 6 139B 139B
1 2357- 9 | 46 467 36 | 2345 35 8
2345A 6 2345A | 89 1349 18 | 234 7 259C
Myth Jellies wrote:Option 1, overlapping end ALS:
(7&4=3)r7c12 - (3=1&9)r7c89 - (9=2or5)r9c9 - (2&5=3&4&7)r7c12|r9c13
Option 2, combined overlapping ALS rule...digits in the overlap anded together are strongly linked to anded digits outside of the overlap.
since r9c9 equals 2 or 5 or 9 and it is weakly linked to all the 2's, 5's, and 9's in the combined ALS ...
ronk wrote:Myth Jellies wrote:Option 1, overlapping end ALS:
(7&4=3)r7c12 - (3=1&9)r7c89 - (9=2or5)r9c9 - (2&5=3&4&7)r7c12|r9c13
For the portion I highlighted, it took me a while to figure out that "not (2 & 5)" on the left implies either "2&3&4&7" or "5&3&4&7" on the right ... and the 2 and 5 are simply omitted.
ronk wrote:Option 2, combined overlapping ALS rule...digits in the overlap anded together are strongly linked to anded digits outside of the overlap.
Hmmm! I missed that point somewhere. Do you have a link to a prior discussion?
And the "combined ALS" is _______?
Modified to show additional exclusions and show exclusions in parenthesesMyth Jellies wrote:Another take on it...
- Code: Select all
347AD 347AD 8 | 5 3(47)9 2 | 6 139B 139B
1 235(7) 9 | 46 467 36 | 2345 35 8
23(4)5D 6 23(4)5D | 89 1349 18 | 234 7 259C
Option 1, overlapping end ALS:
(7&4=3)r7c12 - (3=1&9)r7c89 - (9=2or5)r9c9 - (2&5=3&4&7)r7c12|r9c13
Mike Barker wrote:I hope you all don't mind my calling advanced align pair exclusion technique "Death Blossom".
Huzzah to SHuisman and the rest of the contributors for developing this idea.
Here are a few more examples using ALS with up to 5 values. The first one clearly shows how the two cells do not need to see the entire ALS.
..5....4.2...84.9.........7.3.9...2....15...31.6..3.....2.4....49.5...8.....26...
4-valued ALS Aligned Pair (r8c36, r2c479): : r2c3|r1c6 => r2c3<>3
+--------------------+----------------+------------------+
| 36789 678 5 | 2367 139 *17 | 1238 4 268 |
| 2 17 -137 | @367 8 4 | @356 9 @56 |
| 3689 468 3489 | 236 139 5 | 12368 13 7 |
+--------------------+----------------+------------------+
| 5 3 47 | 9 6 8 | 147 2 14 |
| 789 478 489 | 1 5 2 | 47 6 3 |
| 1 2 6 | 4 7 3 | 89 5 89 |
+--------------------+----------------+------------------+
| 3678 1678 2 | 378 4 9 | 135 137 15 |
| 4 9 #37 | 5 13 #17 | 26 8 26 |
| 378 5 1378 | 378 2 6 | 49 137 49 |
+--------------------+----------------+------------------+
Specifically the approach can be considered to be
- locate a cell (the stem) X which can see ALSs (plural) (the petals) which together contain all of the candidates of the cell X and all of which contain the same one other candidate Z (X+Z).
- This candidate Z can be eliminated from any cell which sees all of the ALSs, but is not part of the ALSs or cell X.
6............273...5..6.78.1.3...2....5.....974.......8..4....1....9..5....8.1..2
3-valued ALS Aligned Pair (r17c7, r7c37): : r7c6|r1c3 => r7c6<>6
+------------------+--------------------+------------------+
| 6 137 *17 | 39 48 48 | #19 2 5 |
| 49 18 148 | 5 2 7 | 3 19 6 |
| 39 5 2 | 1 6 39 | 7 8 4 |
+------------------+--------------------+------------------+
| 1 689 3 | 67 458 45689 | 2 467 78 |
| 2 68 5 | 37 13478 3468 | 1468 1467 9 |
| 7 4 689 | 269 18 2689 | 5 16 3 |
+------------------+--------------------+------------------+
| 8 27 @679 | 4 357 -2356 | @69 3679 1 |
| 34 12367 146 | 267 9 236 | 468 5 78 |
| 5 3679 4679 | 8 37 1 | 469 34679 2 |
+------------------+--------------------+------------------+
.....17....4....56.2.73....6..3..1...8..6..4...2..9..5....73.6.95....4....35.....
ALS Aligned Pair (r27c2, r6c1458): : r6c2|r2c1 => r6c2<>4
+-------------------+--------------------+------------------+
| 358 39 5689 | 46 45 1 | 7 289 2489 |
| *17 #17 4 | 289 289 28 | 3 5 6 |
| 58 2 5689 | 7 3 456 | 89 189 1489 |
+-------------------+--------------------+------------------+
| 6 479 579 | 3 2458 24578 | 1 2789 2789 |
| 1357 8 1579 | 12 6 257 | 29 4 2379 |
| @1347 -1347 2 | @148 @148 9 | 6 @378 5 |
+-------------------+--------------------+------------------+
| 1248 #14 18 | 12489 7 3 | 5 6 1289 |
| 9 5 178 | 1268 128 268 | 4 12378 12378 |
| 12478 6 3 | 5 12489 248 | 289 12789 12789 |
+-------------------+--------------------+------------------+